Phytomining to re-establish phosphorus-poor soil conditions for nature restoration on former agricultural land

  • Schelfhout StephanieEmail author
  • De Schrijver An
  • Vanhellemont Margot
  • Vangansbeke Pieter
  • Wasof Safaa
  • Michael P Perring
  • Haesaert Geert
  • Verheyen Kris
  • Mertens Jan
Regular Article



To restore species-rich grasslands on former agricultural land, typically phosphorus-poor soil conditions need to be re-established. Here we assess the potential of phosphorus extraction by biomass production, i.e. phytomining. We compare two techniques: (i) ‘mowing’, i.e. cutting and removing hay two or three times a year, and (ii) ‘P-mining’, i.e. mowing with yield maximization by adding growth-limiting nutrients other than phosphorus (i.e. nitrogen and potassium).


In a five-year field experiment at three fields situated along a soil phosphorus gradient, we studied phosphorus removal through both biomass assessment and changes in two soil phosphorus pools: bioavailable phosphorus (POlsen) and slowly cycling phosphorus (POxalate).


Phosphorus-mining doubled the phosphorus removal with biomass compared to mowing, and phosphorus removal with biomass was lower at fields with an initially lower concentration of POlsen in the soil. The POlsen concentrations decreased significantly during the experiment with the largest decreases in phosphorus-rich plots. Changes in the POlsen and POxalate stocks were correlated with the amount of phosphorus removed with biomass.


Phosphorus-mining effectively increases phosphorus removal compared to mowing, but becomes less efficient with decreasing soil phosphorus concentrations. Restoring phosphorus-poor soil conditions on formerly fertilized land remains a challenge: phytomining most often needs a long-term commitment.


Abiotic ecological restoration Phytoextraction Bioavailable phosphorus Mowing P-mining Species-rich grassland 









Sodium bicarbonate-extractable soil P


Ammonium-oxalate-extractable soil P


Ammonium-lactate-extractable soil P


Total soil P


Change in POlsen between 2011 and 2017


Change in POxalate between 2011 and 2017


Phosphorus nutrition index


Nitrogen nutrition index


Potassium nutrition index



We are grateful for the admission to conduct our field experiment in Landschap De Liereman (Natuurpunt): the cooperation with the people of Natuurpunt and local farmers was greatly appreciated. Special thanks to Kris Van der Steen, Jan Van den Berghe and Dieter Dijckmans. Further, we thank our lab technicians Luc Willems and Greet de Bruyn for processing and analysing our samples. Kris Ceunen, Filip Ceunen, Luc Willems, Robbe De Beelde, Jelle Van den Berghe, Danny Vereecke and Tomohiro Nagata are thanked for helping with fieldwork. Lander Baeten and Haben Blondeel are thanked for helping out with the statistics. We thank Rob Marrs, Tobias Ceulemans, Frank Nevens, Lander Baeten and three anonymous reviewers for their helpful comments.

Supplementary material

11104_2019_4049_MOESM1_ESM.pdf (4 mb)
ESM 1 (PDF 4076 kb)


  1. Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res pp 1–67Google Scholar
  2. Alvarez R, Steinbach HS (2017) Modeling soil test phosphorus changes under fertilized and unfertilized managements using artificial neural networks. Agron J 109:2278–2290. CrossRefGoogle Scholar
  3. Bakker JP, Elzinga JA, de Vries Y (2002) Effects of long-term cutting in a grassland system: perspectives for restoration of plant communities on nutrient-poor soils. Appl Veg Sci 5:107–120. Google Scholar
  4. Bartoń K (2018) MuMIn: Multi-Model Inference. R package version 1.42.1
  5. Bauke SL, von Sperber C, Tamburini F, Gocke MI, Honermeier B, Schweitzer K, Baumecker M, Don A, Sandhage-Hofmann A, Amelung W (2018) Subsoil phosphorus is affected by fertilization regime in long-term agricultural experimental trials. Eur J Soil Sci 69:103–112. CrossRefGoogle Scholar
  6. Bolker B, R Core Team (2016) bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.20
  7. Bouwman L, Goldewijk KK, Van Der Hoek KW et al (2012) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proc Natl Acad Sci U S A 110:20882–20887. CrossRefGoogle Scholar
  8. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253–e1400253. CrossRefGoogle Scholar
  9. Ceulemans T, Stevens CJ, Duchateau L, Jacquemyn H, Gowing DJG, Merckx R, Wallace H, van Rooijen N, Goethem T, Bobbink R, Dorland E, Gaudnik C, Alard D, Corcket E, Muller S, Dise NB, Dupré C, Diekmann M, Honnay O (2014) Soil phosphorus constrains biodiversity across European grasslands. Glob Chang Biol 20:3814–3822. CrossRefGoogle Scholar
  10. Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214. CrossRefGoogle Scholar
  11. D’Haene K, Salomez J, De Neve S et al (2014) Environmental performance of nitrogen fertiliser limits imposed by the EU nitrates directive. Agric Ecosyst Environ 192:67–79. CrossRefGoogle Scholar
  12. De Schrijver A, Vesterdal L, Hansen K et al (2012) Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions. Oecologia 169:221–234. CrossRefGoogle Scholar
  13. Duffková R, Hejcman M, Libichová H (2015) Effect of cattle slurry on soil and herbage chemical properties, yield, nutrient balance and plant species composition of moderately dry Arrhenatherion grassland. Agric Ecosyst Environ 213:281–289. CrossRefGoogle Scholar
  14. Duru M, Ducrocq H (1997) A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield of permanent pastures. Nutr Cycl Agroecosyst 47:59–69CrossRefGoogle Scholar
  15. Duru M, Thélier-Huché L (1995) N and P–K status of herbages: use for diagnosis of grasslands. Diagnostic Proced Crop N Manag 125–138Google Scholar
  16. Egnér H, Riehm H, Domingo W (1960) Untersuchung über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor und Kaliumbestimmung. K Lantbrukshogskolans Ann 26:199–215Google Scholar
  17. European Commission (2015) Report from the commission to the council and European parliament. The State of Nature in the European Union. Report on the status of and trends for habitat types and species covered by the Birds and Habitats Directives for the 2007–2012 period as required. Brussels, BelgiumGoogle Scholar
  18. Gilbert J, Gowing D, Wallace H (2009) Available soil phosphorus in semi-natural grasslands: assessment methods and community tolerances. Biol Conserv 142:1074–1083. CrossRefGoogle Scholar
  19. Goodenough AE, Hart AG, Stafford R (2012) Regression with empirical variable selection: description of a new method and application to ecological datasets. PLoS One 7:1–10. CrossRefGoogle Scholar
  20. Gough MW, Marrs RH (1990) A comparison of soil fertility between semi-natural and agricultural plant-communities - implications for the creation of species-rich grassland on abandoned agricultural land. Biol Conserv 51:83–96CrossRefGoogle Scholar
  21. Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature 446:791–793. CrossRefGoogle Scholar
  22. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638. CrossRefGoogle Scholar
  23. Hejcman M, Szaková J, Schellsberg J, Tlustoš P (2010) The Rengen grassland experiment: relationship between soil and biomass chemical properties, amount of elements applied, and their uptake. Plant Soil 333:163–179. CrossRefGoogle Scholar
  24. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemcial changes: a review. Plant Soil 237:173–195CrossRefGoogle Scholar
  25. Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus. Its efficient use in agriculture., 1st ed. Adv Agron.
  26. Johnston AE, Poulton PR, White RP, Macdonald AJ (2016) Determining the longer term decline in plant-available soil phosphorus from short-term measured values. Soil Use Manag 32:151–161. CrossRefGoogle Scholar
  27. Klaus VH, Hoever CJ, Fischer M, Hamer U, Kleinebecker T, Mertens D, Schäfer D, Prati D, Hölzel N (2018) Contribution of the soil seed bank to the restoration of temperate grasslands by mechanical sward disturbance. Restor Ecol 26:114–122. CrossRefGoogle Scholar
  28. Kruse J, Abraham M, Amelung W, Baum C, Bol R, Kühn O, Lewandowski H, Niederberger J, Oelmann Y, Rüger C, Santner J, Siebers M, Siebers N, Spohn M, Vestergren J, Vogts A, Leinweber P (2015) Innovative methods in soil phosphorus research : a review. J Plant Nutr Soil Sci 178:43–88. CrossRefGoogle Scholar
  29. Kubanek J (2017) Optimal decision making and matching are tied through diminishing returns. Proc Natl Acad Sci 114:8499–8504. CrossRefGoogle Scholar
  30. Lajtha K, Driscoll CT, Jarrell WM, Elliott ET (1999) Soil phosphorus: characterization and Total element analysis. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Stand. Soil Methods Long-Term Ecol. Res. Oxford University Press, New York, pp 115–142Google Scholar
  31. Liebisch F, Bünemann EK, Huguenin-Elie O, Jeangros B, Frossard E, Oberson A (2013) Plant phosphorus nutrition indicators evaluated in agricultural grasslands managed at different intensities. Eur J Agron 44:67–77. CrossRefGoogle Scholar
  32. Marrs RH (1993) Soil fertility and nature conservation in Europe: theoretical considerations and practical management solutions. Adv Ecol Res 24:241–300. CrossRefGoogle Scholar
  33. Mládková P, Mládek J, Hejduk S, Hejcman M, Cruz P, Jouany C, Pakeman RJ (2015) High-nature-value grasslands have the capacity to cope with nutrient impoverishment induced by mowing and livestock grazing. J Appl Ecol 52:1073–1081. CrossRefGoogle Scholar
  34. Niinemets Ü, Kull K (2005) Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils. Acta Oecol 28:345–356. CrossRefGoogle Scholar
  35. Oelmann Y, Broll G, Holzel N et al (2009) Nutrient impoverishment and limitation of productivity after 20 years of conservation management in wet grasslands of North-Western Germany. Biol Conserv 142:2941–2948. CrossRefGoogle Scholar
  36. Olsen SR, Cole C V, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ 939Google Scholar
  37. Perring MP, Standish RJ, Price JN, Craig MD, Erickson TE, Ruthrof KX, Whiteley AS, Valentine LE, Hobbs RJ (2015) Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6:1–25. CrossRefGoogle Scholar
  38. Pinheiro J, Bates D, Debroy S, et al. (2017) Nlme: linear and nonlinear mixed effects models. R package version 3.1–131
  39. R Core Team (2016) R: a language and environment for statistical computing. Version 3.3.2. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Ringeval B, Augusto L, Monod H, van Apeldoorn D, Bouwman L, Yang X, Achat DL, Chini LP, van Oost K, Guenet B, Wang R, Decharme B, Nesme T, Pellerin S (2017) Phosphorus in agricultural soils: drivers of its distribution at the global scale. Glob Chang Biol 23:3418–3432. CrossRefGoogle Scholar
  41. Roberts TL, Johnston AE (2015) Phosphorus use efficiency and management in agriculture. Resour Conserv Recycl 105:275–281. CrossRefGoogle Scholar
  42. Schelfhout S, De Schrijver A, De Bolle S et al (2015) Phosphorus mining for ecological restoration on former agricultural land. Restor Ecol 23:842–851. CrossRefGoogle Scholar
  43. Schelfhout S, Mertens J, Perring MP, Raman M, Baeten L, Demey A, Reubens B, Oosterlynck S, Gibson-Roy P, Verheyen K, de Schrijver A (2017) P-removal for restoration of Nardus grasslands on former agricultural land: cutting traditions. Restor Ecol 25:S178–S187. CrossRefGoogle Scholar
  44. Schelfhout S, De Schrijver A, Verheyen K et al (2018) Phosphorus mining efficiency declines with decreasing soil P concentration and varies across crop species. Int J Phytoremediation 20:939–946. CrossRefGoogle Scholar
  45. Schellberg J, Hejcman M (2007) The Rengen grassland experiment (1941 - 2006) and its contribution to grassland ecology. Grassl Sci Eur 12:512–515Google Scholar
  46. Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. J Plant Nutr Soil Sci 105:194–202Google Scholar
  47. Smits N a C, Willems JH, Bobbink R (2008) Long-term after-effects of fertilisation on the restoration of calcareous grasslands. Appl Veg Sci 11:279–286. CrossRefGoogle Scholar
  48. Storkey J, Macdonald AJ, Poulton PR, Scott T, Köhler IH, Schnyder H, Goulding KWT, Crawley MJ (2015) Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528:401–404. CrossRefGoogle Scholar
  49. Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42:465–487. CrossRefGoogle Scholar
  50. Syers JK, Johnston AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertil Plant Nutr Bull 45:128. Google Scholar
  51. Török P, Vida E, Deák B, Lengyel S, Tóthmérész B (2011) Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodivers Conserv 20:2311–2332. CrossRefGoogle Scholar
  52. van der Salm C, van Middelkoop JC, Ehlert PAI (2017) Changes in soil phosphorus pools of grasslands following 17 yrs of balanced application of manure and fertilizer. Soil Use Manag 33:2–12. CrossRefGoogle Scholar
  53. Van Der Woude BJ, Pegtel DM, Bakker JP (1994) Nutrient limitation after long-term nitrogen fertilizer application in cut grasslands. J Appl Ecol 31:405–412CrossRefGoogle Scholar
  54. van Dobben HF, Wamelink GWW, Slim PA, Kamiński J, Piórkowski H (2017) Species-rich grassland can persist under nitrogen-rich but phosphorus-limited conditions. Plant Soil 411:451–466. CrossRefGoogle Scholar
  55. van Rotterdam AMD, Bussink DW, Temminghoff EJM, van Riemsdijk WH (2012) Predicting the potential of soils to supply phosphorus by integrating soil chemical processes and standard soil tests. Geoderma 189–190:617–626. CrossRefGoogle Scholar
  56. Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15CrossRefGoogle Scholar
  57. von Lützow M, Kögel-Knabner I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. Eur J Soil Sci 57:426–445. CrossRefGoogle Scholar
  58. Walker KJ, Stevens P a, Stevens DP et al (2004) The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biol Conserv 119:1–18. CrossRefGoogle Scholar
  59. Walkley A, Black IA (1934) An examination of the Djegtareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  60. Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550. CrossRefGoogle Scholar
  61. Weisser WW, Roscher C, Meyer S, et al. (2017) Biodiversity effects on ecosystem functioning in a 14-year grassland experiment : patterns , mechanisms , and open questions. Basic Appl Ecol 23:1–73. doi:
  62. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag New YorkGoogle Scholar
  63. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802. CrossRefGoogle Scholar
  64. Woodcock BA, Savage J, Bullock JM, Nowakowski M, Orr R, Tallowin JRB, Pywell RF (2014) Enhancing floral resources for pollinators in productive agricultural grasslands. Biol Conserv 171:44–51. CrossRefGoogle Scholar
  65. Wuenscher R, Unterfrauner H, Peticzka R, Zehetner F (2015) A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant Soil Environ 61:86–96. CrossRefGoogle Scholar
  66. Zuur A, Ieno E, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Schelfhout Stephanie
    • 1
    Email author
  • De Schrijver An
    • 1
    • 2
  • Vanhellemont Margot
    • 2
  • Vangansbeke Pieter
    • 1
  • Wasof Safaa
    • 1
  • Michael P Perring
    • 1
    • 3
  • Haesaert Geert
    • 4
  • Verheyen Kris
    • 1
  • Mertens Jan
    • 1
  1. 1.Forest & Nature Lab, Department of Environment, Faculty of Bioscience EngineeringGhent UniversityGontrode (Melle)Belgium
  2. 2.Faculty of Science and TechnologyUniversity College GhentMelleBelgium
  3. 3.Ecosystem Restoration and Intervention Ecology (ERIE) Research Group, School of Plant BiologyThe University of Western AustraliaCrawleyAustralia
  4. 4.Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations