Advertisement

Plant and Soil

, Volume 437, Issue 1–2, pp 427–437 | Cite as

Co-deposition of silicon with rare earth elements (REEs) and aluminium in the fern Dicranopteris linearis from China

  • Wen-Shen Liu
  • Hong-Xiang Zheng
  • Mei-Na Guo
  • Chang Liu
  • Hermine Huot
  • Jean Louis Morel
  • Antony van der Ent
  • Ye-Tao TangEmail author
  • Rong-Liang Qiu
Regular Article
  • 200 Downloads

Abstract

Aims

Dicranopteris linearis is a fern that accumulates unusually high concentrations (up to 0.3% dry weight) of rare earth elements (REEs) in China. Previously, we reported that D. linearis accumulates high concentrations of aluminium (Al) and silicon (Si) in the fronds, but the interactions between these elements and REEs were unknown.

Methods

In this study, a range of analytical techniques, including chemical extractions, Scanning-Electron Microscopy with Energy-Dispersive Spectroscopy (SEM-EDS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were used to study the association of REEs with Al and Si.

Results

The results show that D. linearis accumulates high concentrations of REEs (up to 3830 mg kg−1), Al (up to 9660 mg kg−1) and Si (up to 20,300 mg kg−1), with concentrations increasing with age and frond order of pinna. The extraction patterns suggest the existence of REEs-Si and Al-Si complexes. The SEM-EDS analysis confirmed the existence of phytoliths (Al) deposits in the protoplast and apoplast of the pinna cells. The upper epidermis of the pinnule and the pericycle of the midvein are more concentrated in phytoliths (Al) particles. The LA-ICP-MS analysis revealed that REEs and Al are preferentially compartmentalized within bio-inactive tissues of the pinnules, e.g. necrotic tissues (REEs) and in the margins (Al).

Conclusions

Co-deposition of Si with REEs and Al may be a mechanism for dealing with the high concentrations of REEs and Al in D. linearis fronds.

Keywords

Dicranopteris linearis Accumulation Co-deposition Compartmentalization 

Notes

Acknowledgements

The “International Joint Lab - ECOLAND” is acknowledged for supporting this work. A. van der Ent is the recipient of a Discovery Early Career Researcher Award [Grant No. DE160100429] from the Australian Research Council. We thank Chi, Q. Q., engineer of the LA-ICP-MS at Institute of Urban Environment, Chinese Academy of Sciences, Xiamen.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) [Grant No. 41771343]; Science and Technology Planning Project of Guangdong Province [Grant No. 2016A020221013], and the 111 project [Grant No. B18060].

Supplementary material

11104_2019_4005_MOESM1_ESM.doc (1.9 mb)
ESM 1 (DOC 1959 kb)

References

  1. Britez RM, Watanabe T, Jansen S, Reissmann CB, Osaki M (2002) The relationship between aluminium and silicon accumulation in leaves of Faramea marginata (Rubiaceae). New Phytol 156:437–444CrossRefGoogle Scholar
  2. Chao YQ, Liu WS, Chen YM, Chen WH, Zhao LH, Ding QB, Wang SZ, Tang YT, Zhang T, Qiu RL (2016) Structure, variation, and co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine. Environ Sci Technol 50:11481–11490CrossRefGoogle Scholar
  3. Chen ZQ, Chen ZB, Bai LY (2016a) Rare earth element migration in gullies with different Dicranopteris dichotoma covers in the Huangnikeng gully group, Changting county, Southeast China. Chemosphere 164:443–450CrossRefGoogle Scholar
  4. Chen ZQ, Chen ZB, Yan XY, Bai LY (2016b) Stoichiometric mechanisms of Dicranopteris dichotoma, growth and resistance to nutrient limitation in the Zhuxi watershed in the red soil hilly region of China. Plant Soil 398:367–379CrossRefGoogle Scholar
  5. Chour Z, Laubie B, Morel JL, Tang YT, Qiu RL, Simonnot MO, Muhr L (2018) Recovery of rare earth elements from Dicranopteris dichotoma by an enhanced ion exchange leaching process. Chem Eng Process 130:208–213CrossRefGoogle Scholar
  6. Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiol Plant 104(4):608–614CrossRefGoogle Scholar
  7. Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR (2018) The controversies of silicon's role in plant biology. New Phytol 221:67–85.  https://doi.org/10.1111/nph.15343 CrossRefGoogle Scholar
  8. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389CrossRefGoogle Scholar
  9. Ding SM, Liang T, Zhang CS, Huang ZC, Xie YN, Chen TB (2006) Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat: an application for metal accumulation by plants. Environ Sci Technol 40:2686–2691CrossRefGoogle Scholar
  10. Gao HJ, Zhao Q, Zhang XC, Wan XC, Mao JD (2014) Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots. J Agric Food Chem 62:2313–2319CrossRefGoogle Scholar
  11. Han F, Shan XQ, Zhang J, Xie YN, Pei ZG, Zhang SZ, Wen B (2005) Organic acids promote the uptake of lanthanum by barley roots. New Phytol 165:481–492CrossRefGoogle Scholar
  12. He CW, Wang LJ, Liu J, Liu X, Li XL, Ma J, Li YJ, Xu FS (2013) Evidence for ‘silicon’ within the cell walls of suspension-cultured rice cells. New Phytol 200(3):700–709CrossRefGoogle Scholar
  13. Hodson MJ, Sangster AG (2002) X-ray microanalytical studies of mineral localization in the needles of white pine (Pinus strobus L.). Ann Bot 89(4):367–374CrossRefGoogle Scholar
  14. Jones DR, Eason WR, Dighton J (1998) The partitioning of 137Cs, in comparison to K, P, and ca in the shoots of Eriophorum vaginatum L. plants. Environ Pollut 101:437–439CrossRefGoogle Scholar
  15. Kameník J, Mizera J, Řanda Z (2013) Chemical composition of plant silica phytoliths. Environ Chem Lett 11:189–195CrossRefGoogle Scholar
  16. Katz O (2015) Silica phytoliths in angiosperms: phylogeny and early evolutionary history. New Phytol 208:642–646CrossRefGoogle Scholar
  17. Kumar S, Milstein Y, Brami Y, Elbaum M, Elbaum R (2017) Mechanism of silica deposition in sorghum silica cells. New Phytol 213:791–798CrossRefGoogle Scholar
  18. Li MT, Luo ZX, Yan YM, Wang ZH, Chi QQ, Yan CZ, Xing BS (2016) Arsenate accumulation, distribution, and toxicity associated with titanium dioxide nanoparticles in Daphnia magna. Environ Sci Technol 50:9636–9643CrossRefGoogle Scholar
  19. Liu J, Ma J, He CW, Li XL, Zhang WJ, Xu FS, Lin YJ, Wang L (2013) Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon. New Phytol 200:691–699CrossRefGoogle Scholar
  20. Liu WS, Liu C, Wang ZW, Teng WK, Tang YT, Qiu RL (2015) Limiting factors for restoration of dumping sites of ion-adsorption rare earth tailing. Acta Pedol Sin.  https://doi.org/10.11766/trxb201407310385 (in Chinese)
  21. Liu C, Yuan M, Liu WS, Guo MN, Huot H, Tang YT, Laubie B, Simonnot MO, Morel JL, Qiu RL (2018) Element case studies: rare earth elements. In: Van der Ent A, Echevarria G, Baker A, Morel JL (eds) Agromining: farming for metals. Mineral Resource Reviews. Springer, Cham, pp 297–308CrossRefGoogle Scholar
  22. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397CrossRefGoogle Scholar
  23. Ma JF, Zheng SJ, Matsumoto H, Hiradate S (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570CrossRefGoogle Scholar
  24. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278CrossRefGoogle Scholar
  25. Ma J, Cai HM, He CW, Zhang WJ, Wang LJ (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol 206(3):1063–1074CrossRefGoogle Scholar
  26. Malta PG, Arcanjo-Silva S, Ribeiro C, Campos NV, Azevedo AA (2016) Rudgea viburnoides (Rubiaceae) overcomes the low soil fertility of the Brazilian Cerrado and hyperaccumulates aluminum in cell walls and chloroplasts. Plant Soil 408:1–16CrossRefGoogle Scholar
  27. Mann S, Perry CC (1986) Structural aspects of biogenic silica. CIBA Found Symp 121:40–58Google Scholar
  28. Oliveira SR, Arruda MAZ (2014) Application of laser ablation (imaging) inductively coupled plasma mass spectrometry for mapping and quantifying Fe in transgenic and non-transgenic soybean leaves. J Anal At Spectrom 30:389–395CrossRefGoogle Scholar
  29. Piperno DR, Hoist I, Wessel-Beaver L, Andres TC (2002) Evidence for the control of phytolith formation in cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proc Natl Acad Sci U S A 99:10923–10928CrossRefGoogle Scholar
  30. Pletnev IV, Zernov VV (2002) Classification of metal ions according to their complexing properties: a data-driven approach. Anal Chim Acta 455:131–142CrossRefGoogle Scholar
  31. Prabagar S, Hodson MJ, Evans DE (2010) Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) karst.). Environ Exp Bot 70(2–3):266–276Google Scholar
  32. Raven JA (2003) Cycling silicon–the role of accumulation in plants. New Phytol 158:419–421CrossRefGoogle Scholar
  33. Redling K (2006) Rare earth elements in agriculture with emphasis on animal husbandry. PhD dissertation, Ludwig-Maximilians-Universität München, Munich, GermanyGoogle Scholar
  34. Rizwan M, Meunier JD, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209–210:326–334CrossRefGoogle Scholar
  35. Ruíz-Herrera LF, Sánchez-Calderón L, Herrera-Estrella L, López-Bucio J (2012) Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses in Arabidopsis thaliana, seedlings. Plant Soil 353:231–247CrossRefGoogle Scholar
  36. Russell AE, Raich JW, Vitousek PM (1998) The ecology of the climbing fern Dicranopteris linearis, on windward Mauna Loa, Hawaii. J Ecol 86:765–779CrossRefGoogle Scholar
  37. Ryder M, Gérard F, Evans DE, Hodson MJ (2003) The use of root growth and modelling data to investigate amelioration of aluminium toxicity by silicon in Picea abies seedlings. J Inorg Biochem 97(1):52–58CrossRefGoogle Scholar
  38. Shan XQ, Wang HO, Zhang SZ, Zhou HF, Zheng Y, Yu H, Wen B (2003) Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci 165:1343–1353CrossRefGoogle Scholar
  39. Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39:1112–1126CrossRefGoogle Scholar
  40. Si Y, Wang L, Zhou Q, Huang X (2018) Effects of lanthanum and silicon stress on bio-sequestration of lanthanum in phytoliths in rice seedlings. Environ Sci Pollut Res 25:10752–10770CrossRefGoogle Scholar
  41. Thomas PJ, Carpenter D, Boutin C, Allison JE (2014) Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species. Chemosphere 96:57–66CrossRefGoogle Scholar
  42. USDA (2018) Agricultural Research Service, National Plant Germplasm System. Germplasm Resources Information Network (GRIN-Taxonomy)Google Scholar
  43. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefGoogle Scholar
  44. Wang H, Shan XQ, Zhang S, Wen B (2003) Preliminary characterization of a light-rare-earth-element-binding peptide of a natural perennial fern Dicranopteris dichotoma. Anal Bioanal Chem 376:49–52CrossRefGoogle Scholar
  45. Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136(3):3762–3770CrossRefGoogle Scholar
  46. Wang LH, Li JG, Zhou Q, Yang GM, Ding XL, Li XD, Cai CX, Zhang Z, Wei HY, Lu TH, Deng XW, Huang XH (2014) Rare earth elements activate endocytosis in plant cells. Proc Natl Acad Sci U S A 111:12936–12941CrossRefGoogle Scholar
  47. Wei ZG, Yin M, Zhang X, Hong FS, Li B, Zhao GW, Yan CH (2001) Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ Pollut 114:345–355CrossRefGoogle Scholar
  48. Wei ZG, Hong FS, Yin M, Li HX, Hu F, Zhao GW, Wong WJ (2005) Subcellular and molecular localization of rare earth elements and structural characterization of yttrium bound chlorophyll a in naturally grown fern Dicranopteris dichotoma. Microchem J 80:1–8CrossRefGoogle Scholar
  49. Wei ZG, Zhang HJ, Li HX, Hu F (2006) Research trends on rare earth element hyperaccumulator. J Chin Rare Earth Soc 24:1–11 (in Chinese)Google Scholar
  50. Zhang P, Ma Y, Zhang Z, He X, Guo Z, Tai RZ, Ding YY, Zhao YL, Chai ZF (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–1841CrossRefGoogle Scholar
  51. Zhao GW, Hong FS, Wei ZG, Gu YH, Hu TD, Xie YN, Liu T, Tao Y (1999) Light rare earth element speciation of chlorophyll a in naturally grown fern Dicranopteris linearis by EXAFS. Prog Nat Sci 9:1133–1135Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wen-Shen Liu
    • 1
    • 2
    • 3
  • Hong-Xiang Zheng
    • 1
    • 2
    • 3
  • Mei-Na Guo
    • 1
    • 2
    • 3
  • Chang Liu
    • 1
    • 2
    • 3
  • Hermine Huot
    • 1
    • 2
    • 3
  • Jean Louis Morel
    • 4
  • Antony van der Ent
    • 4
    • 5
  • Ye-Tao Tang
    • 1
    • 2
    • 3
    Email author
  • Rong-Liang Qiu
    • 1
    • 2
    • 3
  1. 1.School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySun Yat-sen UniversityGuangzhouChina
  3. 3.Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil RemediationSun Yat-sen UniversityGuangzhouChina
  4. 4.Laboratoire Sols et Environnement, UMR 1120Université de LorraineVandoeuvre-lès-NancyFrance
  5. 5.Centre for Mined Land Rehabilitation, Sustainable Minerals InstituteThe University of QueenslandSt LuciaAustralia

Personalised recommendations