Plant and Soil

, Volume 437, Issue 1–2, pp 273–289 | Cite as

A unique aluminum resistance mechanism conferred by aluminum and salicylic-acid-activated root efflux of benzoxazinoids in maize

  • Zunkang Zhao
  • Xiaofeng Gao
  • Ye Ke
  • Minmin Chang
  • Lu Xie
  • Xiaofeng Li
  • Minghua Gu
  • Jiping LiuEmail author
  • Xinlian TangEmail author
Regular Article


Background and aims

Although aluminum (Al) exclusion via root exudation of organic matters is a common resistance mechanism adopted by many plant species, whether root exudation of benzoxazinoids, such as hydroxamic acids (HAs), confers Al resistance remains unclear.


We performed physiological characterization for an Al-resistant maize cultivar TY and a sensitive maize cultivar ZD.


First, Al exposure induced HA exudation from the root tip of TY, but not from ZD. Second, HAs formed non-toxic Al chelation complexes in vitro and exogenous HAs alleviated root damage and improved root growth under Al stresses. Third, both Al and exogenous salicylic acid (SA) treatments induced accumulation of endogenous SAs in the root apices of TY, which in turn enhanced root HA exudation and Al resistance in TY. Furthermore, an SA biosynthesis inhibitor significantly decreased Al resistance in TY and abolished the beneficial effects of exogenous SA on Al resistance, suggesting a key role of the endogenous SAs in induction of Al resistance. Finally, it was the root-tip HA exudation but not the root-tip HA contents that determined Al resistance in maize.


We have revealed a unique Al exclusion mechanism underlying Al resistance via Al and SA-mediated root HA efflux in maize.


Aluminum tolerance Benxozaxinoids Hydroxamic acids Maize Root exudate Salicylic acid 



This study is supported by the National Natural Science Foundation of China (grant NO. 31201680) and Guangxi Natural Science Foundation (grant NO. 2012GXNSFAA053047 and NO. 2016GXNSFAA380230).

Author’s contribution

This study was conceived and supervised by XL, MG, ZZ, JL and XT; XG, YK, MC and LX performed the experiments. The manuscript was written by ZZ, XT and JL and was reviewed by all authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11104_2019_3971_MOESM1_ESM.docx (559 kb)
ESM 1 (DOCX 559 kb)


  1. Bakera B, Makowska B, Groszyk J, Niziołek M, Orczyk W, Bolibok-Brągoszewska H, Hromada-Judycka A, Rakoczy-Trojanowska M (2015) Structural characteristics of ScBx genes controlling the biosynthesis of hydroxamic acids in rye (Secale cereale L.). J Appl Genet 56:287–298. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cançado G, Loguercio L, Martins P, Parentoni S, Paiva E, Borém A, Lopes M (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theor Appl Genet 99:747–754. CrossRefGoogle Scholar
  3. Chen K-J, Zheng Y-Q, Kong C-H, Zhang S-Z, Li J, Liu X-G (2010) 2, 4-Dihydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA) levels in the wheat rhizosphere and their effect on the soil microbial community structure. J Agric Food Chem 58:12710–12716. CrossRefPubMedGoogle Scholar
  4. Chen L, Li N, Zong M-H (2012) A glucose-tolerant β-glucosidase from Prunus domestica seeds: purification and characterization. Process Biochem 47:127–132. CrossRefGoogle Scholar
  5. Degenhardt J, Larsen PB, Howell SH, Kochian LV (1998) Aluminum resistance in the Arabidopsis mutantalr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol 117:19–27. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Delheize E, Ryan P, Randall P (1993) Aluminium tolerance in wheat (Triticum aestivum L.). II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702. CrossRefGoogle Scholar
  8. Ebisui K, Ishihara A, Hirai N, Iwamura H (1998) Occurrence of 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA) and a β-glucosidase specific for its glucoside in maize seedlings. Z Naturforschung C 53:793–798. CrossRefGoogle Scholar
  9. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091. CrossRefPubMedGoogle Scholar
  10. Grün S, Frey M, Gierl A (2005) Evolution of the indole alkaloid biosynthesis in the genus Hordeum: distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri. Phytochem 66:1264–1272. CrossRefGoogle Scholar
  11. Guimaraes CT, Simoes CC, Pastina MM, Maron LG, Magalhaes JV, Vasconcellos RC, Guimaraes LJ, Lana UG, Tinoco CF, Noda RW, Jardim-Belicuas SN, Kochian LV, Alves VMC, Parentoni S (2014) Genetic dissection of Al tolerance QTLs in the maize genome by high density SNP scan. BMC Genomics 15:153. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Guo D, Zhao S, Huang L, Ma C, Hao L (2014) Aluminum tolerance in Arabidopsis thaliana as affected by endogenous salicylic acid. Biol Plant 58:725–732. CrossRefGoogle Scholar
  13. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25. CrossRefGoogle Scholar
  14. Kato-Noguchi H (2008) Effects of four benzoxazinoids on gibberellin-induced α-amylase activity in barley seeds. J Plant Physiol 165:1889–1894. CrossRefPubMedGoogle Scholar
  15. Kidd P, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352. CrossRefPubMedGoogle Scholar
  16. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493. CrossRefPubMedGoogle Scholar
  17. Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598. CrossRefPubMedGoogle Scholar
  18. Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H (1985) Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol 77:544–551. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Larsen E, Christensen LP (2000) Simple method for large scale isolation of the cyclic arylhydroxamic acid DIMBOA from maize (Zea mays L.). J Agric Food Chem 48:2556–2558. CrossRefPubMedGoogle Scholar
  20. Leszczynski B, Dixon AF (1990) Resistance of cereals to aphids: interaction between hydroxamic acids and the aphid Sitobion avenae (Homoptera: Aphididae). Ann Appl Biol 117:21–30. CrossRefGoogle Scholar
  21. Li XF, Ma JF, Hiradate S, Matsumoto H (2000) Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays. Physiol Plant 108:152–160. CrossRefGoogle Scholar
  22. Li XF, Ma JF, Matsumoto H (2002) Aluminum-induced secretion of both citrate and malate in rye. Plant Soil 242:235–243. CrossRefGoogle Scholar
  23. Liang C, Piñeros M, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian L, Liao H (2013) Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399. CrossRefPubMedGoogle Scholar
  25. Liu J, Luo X, Shaff J, Liang C, Jia X, Li Z, Magalhaes J, Kochian LV (2012a) A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminum resistance and improved carbon-use efficiency for aluminum resistance. Plant J 71:327–337. CrossRefPubMedGoogle Scholar
  26. Liu N, You J, Shi W, Liu W, Yang Z (2012b) Salicylic acid involved in the process of aluminum induced citrate exudation in Glycine max L. Plant Soil 352:85–97. CrossRefGoogle Scholar
  27. Lu C, Liu X, Xu J, Dong F, Zhang C, Tian Y, Zheng Y (2012) Enhanced exudation of DIMBOA and MBOA by wheat seedlings alone and in proximity to wild oat (Avena fatua) and flixweed (Descurainia sophia). Weed Sci 60:360–365.
  28. Ma JF (2005) Physiological mechanisms of Al resistance in higher plants. Soil Sci Plant Nutr 51:609–612. CrossRefGoogle Scholar
  29. Ma JF, Zheng SJ, Li XF, Takeda K, Matsumoto H (1997) A rapid hydroponic screening for aluminium tolerance in barley. Plant Soil 191:133–137. CrossRefGoogle Scholar
  30. Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang Y-H, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161. CrossRefPubMedGoogle Scholar
  31. Makleit P (2005) Changes in cyclic hydroxamic acid content of various rye varieties for the effect of abiotic stress. Acta Biol Szeged 49:103–104 Google Scholar
  32. Makowska B, Bakera B, Rakoczy-Trojanowska M (2015) The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiol Plant 37:176. CrossRefGoogle Scholar
  33. Manuwoto S, Scriber JM (1985) Consumption and utilization of experimentally altered corn by southern armyworm: iron, nitrogen, and cyclic hydroxamates. J Chem Ecol 11:1469–1483. CrossRefPubMedGoogle Scholar
  34. Marcacci S, Raveton M, Ravanel P, Schwitzguébel J-P (2005) The possible role of hydroxylation in the detoxification of atrazine in mature vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Z Naturforschung C 60:427–434. CrossRefGoogle Scholar
  35. Matonyei T, Cheprot R, Liu J, Piñeros M, Shaff J, Gudu S, Were B, Magalhaes J, Kochian L (2014) Physiological and molecular analysis of aluminum tolerance in selected Kenyan maize lines. Plant Soil 377:357–367. CrossRefGoogle Scholar
  36. Mattiello L, Kirst M, da Silva FR, Jorge RA, Menossi M (2010) Transcriptional profile of maize roots under acid soil growth. BMC Plant Biol 10:196. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Melo JO, Lana UG, Piñeros MA, Alves VM, Guimarães CT, Liu J, Zheng Y, Zhong S, Fei Z, Maron LG, Schaffert RE, Kochian LV (2013) Incomplete transfer of accessory loci influencing SbMATE expression underlies genetic background effects for aluminum tolerance in sorghum. Plant J 73:276–288. CrossRefPubMedGoogle Scholar
  38. Neal A, Ton J (2013) Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudation from the roots. Plant Signal Behav 8:e22655. CrossRefPubMedGoogle Scholar
  39. Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:e35498. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2 H-1, 4-benzoxazin-3 (4 H)-one: key defense chemicals of cereals. J Agric Food Chem 57:1677–1696. CrossRefPubMedGoogle Scholar
  41. Niemeyer HM, Perez FJ (1995) Potential of hydroxamic acids in the control of cereal pests, diseases, and weeds. In: Allelopathy: Organisms, Processes and Applications.Google Scholar
  42. Ortego F, Ruız M, Castanera P (1998) Effect of DIMBOA on growth and digestive physiology of Sesamia nonagrioides (Lepidoptera: Noctuidae) larvae. J Insect Physiol 44:95–101. CrossRefPubMedGoogle Scholar
  43. Pan J-W, Zhu M-Y, Chen H (2001) Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot 46:71–79. CrossRefPubMedGoogle Scholar
  44. Pandey P, Srivastava RK, Dubey R (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22:656–670. CrossRefPubMedGoogle Scholar
  45. Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV (2001) Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese spring wheat. Planta 212:829–834. CrossRefPubMedGoogle Scholar
  46. Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795. CrossRefGoogle Scholar
  47. Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat (roles of root apical phosphate and malate exudation). Plant Physiol 112:591–597. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pineros MA, Magalhaes JV, Alves VMC, Kochian LV (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129:1194–1206. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Poschenrieder C, Tolrà RP, Barceló J (2005) A role for cyclic hydroxamates in aluminium resistance in maize? J Inorg Biochem 99:1830–1836. CrossRefPubMedGoogle Scholar
  50. Raskin I, Skubatz H, Tang W, Meeuse BJ (1990) Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot 66:369–373. CrossRefGoogle Scholar
  51. Ryan PR, Delhaize E, Randall PJ (1995) Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110. CrossRefGoogle Scholar
  52. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653. CrossRefPubMedGoogle Scholar
  53. Schullehner K, Dick R, Vitzthum F, Schwab W, Brandt W, Frey M, Gierl A (2008) Benzoxazinoid biosynthesis in dicot plants. Phytochem 69:2668–2677. CrossRefGoogle Scholar
  54. Sivaguru M, Liu J, Kochian LV (2013) Targeted expression of SbMate in the root distal transition zone is responsible for Sorghum aluminum resistance. Plant J 76:297–307. CrossRefPubMedGoogle Scholar
  55. Søltoft M, Jørgensen LN, Svensmark B, Fomsgaard IS (2008) Benzoxazinoid concentrations show correlation with Fusarium head blight resistance in Danish wheat varieties. Biochem Syst Ecol 36:245–259. CrossRefGoogle Scholar
  56. Song YY, Cao M, Xie LJ, Liang XT, Zeng RS, Su YJ, Huang JH, Wang RL, Luo SM (2011) Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza 21:721–731. CrossRefPubMedGoogle Scholar
  57. Tang X, Guo T, Gao X, Li XF, Gu M (2015) The Relationship between Hydroxamates Cyclic Secretion from Maize and Its Tolerance to Aluminum. Ecol Environ Sci 24:547–553. CrossRefGoogle Scholar
  58. Virtanen A, Hietala P (1955) 2 (3)-Benzoxazolinone, an anti-Fusarium factor in rye seedlings. Acta Chem Scand 9:1543–1544. CrossRefGoogle Scholar
  59. Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Von Uexküll H, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15. CrossRefGoogle Scholar
  61. Wahlross O, Virtanen AI (1959) The precursors of 6-methoxybenzoxazolinone in maize and wheat plants, their isolation and some of their properties. Acta Chem Scand 13:1906–1908. CrossRefGoogle Scholar
  62. Wang Y, Li R, Li D, Jia X, Zhou D, Li J, Lyi SM, Hou S, Huang Y, Kochian LV, Liu J (2017) NIP1; 2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proc Natl Acad Sci U S A 114:5047–5052. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wang Y, Cai Y, Cao Y, Liu J (2018) Aluminum-activated root malate and citrate exudation is independent of NIP1; 2-facilitated root-cell-wall aluminum removal in Arabidopsis. Plant Signal Behav 13:e1422469. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wouters FC, Gershenzon J, Vassão DG (2016) Benzoxazinoids: reactivity and modes of action of a versatile class of plant chemical defenses. J Brazil Chem Soc 27: 1379–1397.
  65. Yan F, Liang X, Zhu X (1999) The role of DIMBOA on the feeding of Asian corn borer, Ostrinia furnacalis (Guenee)(Lep., Pyralidae). J Appl Entomol 123:49–53. CrossRefGoogle Scholar
  66. Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ (2011) Cell wall hemicellulose contributes significantly to Al adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zasada I, Meyer S, Halbrendt J, Rice C (2005) Activity of hydroxamic acids from Secale cereale against the plant-parasitic nematodes Meloidogyne incognita and Xiphinema americanum. Phytopathol 95:1116–1121. CrossRefGoogle Scholar
  68. Zhang W-H, Ryan PR, Tyerman SD (2001) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125:1459–1472. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat: I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751. CrossRefPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of AgricultureGuangxi UniversityNanningChina
  2. 2.National Demonstration Center for Experimental Plant Science EducationGuangxi UniversityNanningChina
  3. 3.United States Department of Agriculture, Agricultural Research ServiceRobert W. Holley CenterIthacaUSA

Personalised recommendations