Advertisement

Plant and Soil

, Volume 437, Issue 1–2, pp 21–40 | Cite as

Structural and functional differentiation of the microbial community in the surface and subsurface peat of two minerotrophic fens in China

  • Meng WangEmail author
  • Jianqing Tian
  • Zhaojun Bu
  • Louis J. Lamit
  • Huai Chen
  • Qiuan Zhu
  • Changhui Peng
Regular Article

Abstract

Background and aims

Microbial communities are the primary drivers of organic matter decomposition in peatlands. However, limited knowledge is available regarding depth-dependent microbial community structure and function in East Asian peatlands, using cultivation independent approaches.

Methods

We investigated the vertical stratification of prokaryote and fungal communities in a moderately rich fen in northeast China (Hani) and a rich fen in southwest China (Riganqiao).

Results

Fungal and prokaryotic operational taxonomic unit (OTU) composition exhibited strong site and/or depth responses. Prokaryotic OTUs exhibited the greatest alpha diversity at the mesotelm ‘hot spot’, whereas the predicted metagenomic metabolic functions did not align with the pattern of prokaryote alpha diversity. The large cover of shrubs contributed to a greater relative abundance of ericoid- and ecto-mycorrhizal fungi at Hani, whereas Riganqiao showed more arbuscular mycorrhizal fungi. Soil pH and water table depth were among the predominant abiotic factors associated with microbial community composition.

Conclusions

Projected shifts in hydrology and/or vegetation with global change may cause substantial impacts on peatland microorganisms and thus the associated biogeochemistry. It is critical to better understand the mechanism of the discrepancy between microbial community structure and the functions at the mesotelm ‘hot spot’ when evaluating the ecosystem functions in peatlands.

Keywords

Archaea Bacteria Mesotelm Mycorrhizal fungi Oligotrophs Stratification 

Notes

Acknowledgments

The work was supported by the National Natural Science Foundation of China (41601098), the Young Excellence Program for the Teachers of College of Forestry, Northwest A&F University (Z111021603), Natural Science Foundation of Shaanxi Province of China (2016JQ3022). The DNA sequencing work was supported by the USDA Forest Service Northern Research Station Climate Change Program, the US National Science Foundation [grant number DEB-1146149], and the U.S. Department of Energy Joint Genome Institute Community Science Program [Proposal ID 1445]. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful to Nate Basiliko and Michael Carson of Laurentian University for nutrient analyses. We thank Prof. Tim Moore of McGill University, Dr. Erik Lilleskov of the US Forest Service and two anonymous reviewers for their thoughtful comments that significantly improved this manuscript.

Supplementary material

11104_2019_3962_MOESM1_ESM.docx (5.6 mb)
ESM 1 (DOCX 5735 kb)

References

  1. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. P Natl Acad Sci USA 105 (supplement 1):11512-11519.  https://doi.org/10.1073/pnas.0801925105
  2. Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994.  https://doi.org/10.1016/j.soilbio.2012.10.003 CrossRefGoogle Scholar
  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UKGoogle Scholar
  4. Asemaninejad A, Thorn RG, Branfireun BA, Lindo Z (2018) Climate change favours specific fungal communities in boreal peatlands. Soil Biol Biochem 120:28–36.  https://doi.org/10.1016/j.soilbio.2018.01.029 CrossRefGoogle Scholar
  5. Asshauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884.  https://doi.org/10.1093/bioinformatics/btv287 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bai Z, Xie H, Kao-Kniffin J, Chen B, Shao P, Liang C (2017) Shifts in microbial trophic strategy explain different temperature sensitivity of CO2 flux under constant and diurnally varying temperature regimes. FEMS Microbiol Ecol 93: fix063.  https://doi.org/10.1093/femsec/fix063
  7. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, Wit P, Sánchez-García M, Ebersberger I, Sousa F, Amend A, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919.  https://doi.org/10.1111/2041-210X.12073 CrossRefGoogle Scholar
  8. Bragazza L, Bardgett RD, Mitchell EAD, Buttler A (2015) Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytol 205:1175–1182.  https://doi.org/10.1111/nph.13116 CrossRefPubMedGoogle Scholar
  9. Bu ZJ, Chen X, Rydin H, Wang SZ, Ma JZ, Zeng J (2013) Performance of four mosses in a reciprocal transplant experiment: implications for peatland succession in NE China. J Bryol 35:220–227.  https://doi.org/10.1179/1743282013y.0000000063 CrossRefGoogle Scholar
  10. Bushnell B, Rood J, Singer E (2017) BBMerge - accurate paired shotgun read merging via overlap. PLoS One 12:e0185056.  https://doi.org/10.1371/journal.pone.0185056 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522.  https://doi.org/10.1073/pnas.1000080107 CrossRefPubMedGoogle Scholar
  13. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624.  https://doi.org/10.1038/ismej.2012.8 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen Y, Murrell JC (2010) Geomicrobiology: Methanotrophs in moss. Nat Geosci 3:595–596.  https://doi.org/10.1038/ngeo952 CrossRefGoogle Scholar
  15. Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2014) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536.  https://doi.org/10.1111/nph.13208 CrossRefPubMedGoogle Scholar
  16. Clymo RS (1984) The limits to peat bog growth. Philos T R Soc B 303:605–654.  https://doi.org/10.1098/rstb.1984.0002 CrossRefGoogle Scholar
  17. Clymo RS, Bryant CL (2008) Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim Cosmochim Ac 72:2048–2066.  https://doi.org/10.1016/j.gca.2008.01.032 CrossRefGoogle Scholar
  18. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811.  https://doi.org/10.1111/nph.13697 CrossRefPubMedGoogle Scholar
  19. Cornwell WK, Bedford BL, Chapin CT (2001) Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. Am J Bot 88:1824–1829.  https://doi.org/10.2307/3558359 CrossRefPubMedGoogle Scholar
  20. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574.  https://doi.org/10.1890/08-1823.1 CrossRefGoogle Scholar
  21. Dedysh SN (2009) Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology 78:655–669.  https://doi.org/10.1134/S0026261709060010 CrossRefGoogle Scholar
  22. Dedysh SN, Derakshani M, Liesack W (2001) Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 67:4850–4857.  https://doi.org/10.3389/fmicb.2011.00184 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998.  https://doi.org/10.1038/nmeth.2604 CrossRefGoogle Scholar
  24. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ekono (1981) Report on energy use of peat. Contribution to U.N. conference on new and renewable sources of energy, NairobiGoogle Scholar
  26. Elliott DR, Caporn SJ, Nwaishi F, Nilsson RH, Sen R (2015) Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation. PLoS One 10:e0124726.  https://doi.org/10.1371/journal.pone.0124726 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, den Camp HJMO, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548.  https://doi.org/10.1038/nature08883 CrossRefPubMedGoogle Scholar
  28. Fernandez CW, Kennedy PG (2016) Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209:1382–1394.  https://doi.org/10.1111/nph.13648 CrossRefPubMedGoogle Scholar
  29. Fernandez CW, Koide RT (2014) Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem 77:150–157.  https://doi.org/10.1016/j.soilbio.2014.06.026 CrossRefGoogle Scholar
  30. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364.  https://doi.org/10.1890/05-1839 CrossRefPubMedGoogle Scholar
  31. Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133.  https://doi.org/10.1038/233133a0 CrossRefPubMedGoogle Scholar
  32. Galand PE, Yrjälä K, Conrad R (2010) Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences 7:3893–3900.  https://doi.org/10.1016/j.soilbio.2012.01.018 CrossRefGoogle Scholar
  33. Godin A, McLaughlin JW, Webster KL, Packalen M, Basiliko N (2012) Methane and methanogen community dynamics across a boreal peatland nutrient gradient. Soil Biol Biochem 48:96–105.  https://doi.org/10.1016/j.soilbio.2012.01.018 CrossRefGoogle Scholar
  34. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195.  https://doi.org/10.2307/1941811 CrossRefGoogle Scholar
  35. Graves S, Piepho H-P, Selzer L (2015) multcompView: visualizations of paired comparisons. R package version 0.1–7. https://CRAN.R-project.org/package=multcompView
  36. Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan ZG, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570.  https://doi.org/10.1038/nature12375 CrossRefPubMedGoogle Scholar
  37. Horn MA, Matthies C, Kusel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83.  https://doi.org/10.1128/Aem.69.1.74-83.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Humbert S, Zopfi J, Tarnawski S-E (2012) Abundance of anammox bacteria in different wetland soils. Environ Microbiol Rep 4:484–490.  https://doi.org/10.1111/j.1758-2229.2012.00347.x CrossRefGoogle Scholar
  39. Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677.  https://doi.org/10.1111/j.1574-6941.2012.01437.x CrossRefPubMedGoogle Scholar
  40. Joosten H, Clarke D (2002) Wise use of mires and peatlands - background and principles including a framework for decision-making. International Mire conservation Group and International Peat Society, FinlandGoogle Scholar
  41. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462.  https://doi.org/10.1093/nar/gkv1070 CrossRefPubMedGoogle Scholar
  42. Kavanagh K (2011) Fungi: biology and applications. John Wiley & Sons, Chichester, UKCrossRefGoogle Scholar
  43. Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, Jetten MSM, Damste JSS, Op den Camp HJM (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3:617–621.  https://doi.org/10.1038/ngeo939 CrossRefGoogle Scholar
  44. Kohout P, Sudová R, Janoušková M, Čtvrtlíková M, Hejda M, Pánková H, Slavíková R, Štajerová K, Vosátka M, Sýkorová Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493.  https://doi.org/10.1016/j.soilbio.2013.08.027 CrossRefGoogle Scholar
  45. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson K-H (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277.  https://doi.org/10.1111/mec.12481 CrossRefPubMedGoogle Scholar
  46. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82:1–26.  https://doi.org/10.18637/jss.v082.i13 CrossRefGoogle Scholar
  47. Lamit LJ, Romanowicz KJ, Potvin LR, Rivers AR, Singh K, Lennon JT, Tringe SG, Kane ES, Lilleskov EA (2017) Patterns and drivers of fungal community depth stratification in Sphagnum peat. FEMS Microbiol Ecol 93:fix082.  https://doi.org/10.1093/femsec/fix082
  48. Larmola T, Leppänen SM, Tuittila E-S, Aarva M, Merilä P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. P Natl Acad of Sci USA111:734-739.  https://doi.org/10.1073/pnas.1314284111
  49. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120.  https://doi.org/10.1128/AEM.00335-09 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lenth R (2018) Emmeans: estimated marginal means, aka least-squares means. R package version 1.3.0. https://CRAN.R-project.org/package=emmeans
  51. Li F, Chen L, Redmile-Gordon M, Zhang J, Zhang C, Ning Q, Li W (2018) Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil. Land Degrad Dev 29:1642–1651.  https://doi.org/10.1002/ldr.2965 CrossRefGoogle Scholar
  52. Lin X, Green S, Tfaily MM, Prakash O, Konstantinidis KT, Corbett JE, Chanton JP, Cooper WT, Kostka JE (2012) Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the glacial Lake Agassiz peatland. Appl Environ Microbiol 78:7023–7031.  https://doi.org/10.1128/AEM.01750-12 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton P, Imvittaya A, Chanton JP, Cooper W, Schadt C, Kostka JE (2014a) Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl Environ Microbiol 80:3531–3540.  https://doi.org/10.1128/aem.00206-14 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lin X, Tfaily MM, Steinweg JM, Chanton P, Esson K, Yang ZK, Chanton JP, Cooper W, Schadt CW, Kostka JE (2014b) Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell experimental Forest, Minnesota, USA. Appl Environ Microbiol 80:3518–3530.  https://doi.org/10.1128/aem.00205-14 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Loisel J, Yu ZC, Beilman DW, Camill P, Alm J, Amesbury MJ, Anderson D, Andersson S, Bochicchio C, Barber K, Belyea LR, Bunbury J, Chambers FM, Charman DJ, De Vleeschouwer F, Fialkiewicz-Koziel B, Finkelstein SA, Galka M, Garneau M, Hammarlund D, Hinchcliffe W, Holmquist J, Hughes P, Jones MC, Klein ES, Kokfelt U, Korhola A, Kuhry P, Lamarre A, Lamentowicz M, Large D, Lavoie M, MacDonald G, Magnan G, Makila M, Mallon G, Mathijssen P, Mauquoy D, McCarroll J, Moore TR, Nichols J, O'Reilly B, Oksanen P, Packalen M, Peteet D, Richard PJH, Robinson S, Ronkainen T, Rundgren M, Sannel ABK, Tarnocai C, Thom T, Tuittila ES, Turetsky M, Valiranta M, van der Linden M, van Geel B, van Bellen S, Vitt D, Zhao Y, Zhou WJ (2014) A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24:1028–1042.  https://doi.org/10.1177/0959683614538073 CrossRefGoogle Scholar
  56. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277.  https://doi.org/10.1126/science.aaf4507 CrossRefPubMedGoogle Scholar
  57. Ma XH, Yin CS, Wen BL, Wang M, Wang GD, Wang DX, Wang YY, Liu ZG, Sun L, Mu XJ, Yan MH, Zhang JT, Li XJ, Li XY, Yang F, Yang FY, Chen WW, Chen GS, Yao ZF, Jiang M, Xu HF, Liu XR (2012) Charbon reserves and emissions of peatlands in China. China Forestry Publishing House, Beijing, ChinaGoogle Scholar
  58. Macrae ML, Devito KJ, Strack M, Waddington JM (2013) Effect of water table drawdown on peatland nutrient dynamics: implications for climate change. Biogeochemistry 112:661–676.  https://doi.org/10.1007/s10533-012-9730-3 CrossRefGoogle Scholar
  59. Marti M, Juottonen H, Robroek BJM, Yrjala K, Danielsson A, Lindgren PE, Svensson BH (2015) Nitrogen and methanogen community composition within and among three Sphagnum dominated peatlands in Scandinavia. Soil Biol Biochem 81:204–211.  https://doi.org/10.1016/j.soilbio.2014.11.016 CrossRefGoogle Scholar
  60. McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim EH, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW, Saleska SR (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514:478–481.  https://doi.org/10.1038/nature13798 CrossRefPubMedGoogle Scholar
  61. Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36.  https://doi.org/10.1046/j.0022-0477.2001.00633.x CrossRefGoogle Scholar
  62. Morris PJ, Waddington JM, Benscoter BW, Turetsky MR (2011) Conceptual frameworks in peatland ecohydrology: looking beyond the two-layered (acrotelm–catotelm) model. Ecohydrology 4:1–11.  https://doi.org/10.1002/eco.191 CrossRefGoogle Scholar
  63. Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26:31–36.  https://doi.org/10.1016/S0003-2670(00)88444-5 CrossRefGoogle Scholar
  64. Myers B, Webster KL, McLaughlin JW, Basiliko N (2012) Microbial activity across a boreal peatland nutrient gradient: the role of fungi and bacteria. Wetl Ecol Manag 20:77–88.  https://doi.org/10.1007/s11273-011-9242-2 CrossRefGoogle Scholar
  65. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248.  https://doi.org/10.1016/j.funeco.2015.06.006 CrossRefGoogle Scholar
  66. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: community ecology package. R package version 2:4–3 https://CRAN.R-project.org/package=vegan Google Scholar
  67. Oshiki M, Satoh H, Okabe S (2016) Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol 18:2784–2796.  https://doi.org/10.1111/1462-2920.13134 CrossRefPubMedGoogle Scholar
  68. Palmer K, Horn MA (2015) Denitrification activity of a remarkably diverse fen denitrifier community in Finnish Lapland is N-oxide limited. PLoS One 10:e0123123.  https://doi.org/10.1371/journal.pone.0123123 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Palmer K, Köpp J, Gebauer G, Horn MA (2016) Drying-rewetting and flooding impact denitrifier activity rather than community structure in a moderately acidic fen. Front Microbiol 7:727.  https://doi.org/10.3389/fmicb.2016.00727 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414.  https://doi.org/10.1111/1462-2920.13023 CrossRefPubMedGoogle Scholar
  71. Parkinson JA, Allen SE (1975) Wet oxidation procedure suitable for determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plan 6:1–11.  https://doi.org/10.1080/00103627509366539 CrossRefGoogle Scholar
  72. Peltoniemi K, Straková P, Fritze H, Iráizoz PA, Pennanen T, Laiho R (2012) How water-level drawdown modifies litter-decomposing fungal and actinobacterial communities in boreal peatlands. Soil Biol Biochem 51:20–34.  https://doi.org/10.1016/j.soilbio.2012.04.013 CrossRefGoogle Scholar
  73. Peltoniemi K, Laiho R, Juottonen H, Kiikkila O, Makiranta P, Minkkinen K, Pennanen T, Penttila T, Sarjala T, Tuittila ES, Tuomivirta T, Fritze H (2015) Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens. FEMS Microbiol Ecol 91:fiv062.  https://doi.org/10.1093/femsec/fiv062
  74. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596.  https://doi.org/10.1093/nar/gks1219 CrossRefGoogle Scholar
  75. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  76. Ramsar (2017) List of Wetlands of International Importance. http://www.ramsar.org/sites/default/files/documents/library/sitelist.pdf
  77. Rydin H, Jeglum JK (2013) The biology of peatlands. Oxford University Press, New York, USACrossRefGoogle Scholar
  78. Serkebaeva YM, Kim Y, Liesack W, Dedysh SN (2013) Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS One 8:e63994.  https://doi.org/10.1371/journal.pone.0063994 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shade A, Peter H, Allison SD, Baho DL, Berga M, Burgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JB, Matulich KL, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417.  https://doi.org/10.3389/fmicb.2012.00417 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Siletti CE, Zeiner CA, Bhatnagar JM (2017) Distributions of fungal melanin across species and soils. Soil Biol Biochem 113:285–293.  https://doi.org/10.1016/j.soilbio.2017.05.030 CrossRefGoogle Scholar
  81. Smith SE, Read D (2008) Mycorrhizal Symbiosis. Academic Press, London, UKGoogle Scholar
  82. Straková P, Penttilä T, Laine J, Laiho R (2012) Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands. Glob Chang Biol 18:322–335.  https://doi.org/10.1111/j.1365-2486.2011.02503.x CrossRefGoogle Scholar
  83. Su Y, Jiang XZ, Wu WP, Wang MM, Hamid MI, Xiang MC, Liu XZ (2016) Genomic, transcriptomic, and proteomic analysis provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila. G3-genes Genom genet 6:3603-3613.  https://doi.org/10.1534/g3.116.033308
  84. Sun H, Terhonen E, Kovalchuk A, Tuovila H, Chen H, Oghenekaro AO, Heinonsalo J, Kohler A, Kasanen R, Vasander H, Asiegbu FO (2016) Dominant tree species and soil type affect the fungal community structure in a boreal peatland forest. Appl Environ Microbiol 82:2632–2643.  https://doi.org/10.1128/AEM.03858-15 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Partel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688.  https://doi.org/10.1126/science.1256688 CrossRefPubMedGoogle Scholar
  86. Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP (2014) Organic matter transformation in the peat column at Marcell experimental Forest: Humification and vertical stratification. J Geophys Res-Biogeo 119:661–675.  https://doi.org/10.1002/2013JG002492 CrossRefGoogle Scholar
  87. Thormann MN (2006) Diversity and function of fungi in peatlands: a carbon cycling perspective. Can J Soil Sci 86:281–293.  https://doi.org/10.4141/S05-082 CrossRefGoogle Scholar
  88. Thormann MN (2011) In vitro decomposition of Sphagnum-derived acrotelm and mesotelm peat by indigenous and alien basidiomycetous fungi. Mires peat 8:article 3Google Scholar
  89. Thormann MN, Rice AV (2007) Fungi from peatlands. Fungal Divers 24:241–299Google Scholar
  90. Tremblay J, Singh K, Fern A, Kirton ES, He SM, Woyke T, Lee J, Chen F, Dangl JL, Tringe SG (2015) Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol 6:771.  https://doi.org/10.3389/fmicb.2015.00771 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol R 79:243–262.  https://doi.org/10.1128/Mmbr.00001-15 CrossRefGoogle Scholar
  92. Urbanová Z, Bárta J (2014) Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types. FEMS Microbiol Ecol 90:633–646.  https://doi.org/10.1111/1574-6941.12422 CrossRefPubMedGoogle Scholar
  93. Urbanová Z, Bárta J (2016) Effects of long-term drainage on microbial community composition vary between peatland types. Soil Biol Biochem 92:16–26.  https://doi.org/10.1016/j.soilbio.2015.09.017 CrossRefGoogle Scholar
  94. Wallèn B (1987) Growth pattern and distribution of biomass of Calluna vulgaris on an ombrotrophic peat bog. Holarct Ecol 10:73–79Google Scholar
  95. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, Orlando, FloridaGoogle Scholar
  96. Whiteway M, Bachewich C (2007) Morphogenesis in Candida albicans. Annu Rev Microbiol 61:529–553.  https://doi.org/10.1146/annurev.inicro.61.080706.093341 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365.  https://doi.org/10.1128/Aem.66.10.4361-4365.2000 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire ResearchNortheast Normal UniversityJilinChina
  2. 2.Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical SciencesNortheast Normal UniversityChangchunChina
  3. 3.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  4. 4.Department of BiologySyracuse UniversitySyracuseUSA
  5. 5.Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  6. 6.Center for Ecological Forecasting and Global Change, College of ForestryNorthwest A&F UniversityYanglingChina
  7. 7.Department of Biology Sciences, Institute of Environment SciencesUniversity of Quebec at MontrealQuebecCanada

Personalised recommendations