Rhizosphere chemistry and above-ground elemental fractionation of nickel hyperaccumulator species from Weda Bay (Indonesia)

  • Séverine Lopez
  • Antony van der Ent
  • Peter D. Erskine
  • Guillaume Echevarria
  • Jean Louis Morel
  • Gavin Lee
  • Edi Permana
  • Emile BenizriEmail author
Regular Article



The identification and use of hyperaccumulator plants in mining projects has been recognized as an important component of mine planning at several sites around the world. The objective of this research was to provide information on relevant plant tissue chemistry and an indicative assessment of the potential for phytomining at Weda Bay Nickel (WBN), Halmahera.


The first stage was the identification of native nickel hyperaccumulator plants. In total, 280 plant tissue samples from 10 nickel accumulator species and 46 matching rhizosphere soil samples were collected. Chemical analyses of plant tissue samples were performed and physico-chemical parameters of the rhizosphere soils were also measured.


A total of three species were considered as metal crops: Rinorea aff. bengalensis (up to 22,200 mg kg−1 dry weight at 2 m above ground level), Ficus trachypison (1060 mg kg−1) and Trichospermum morotaiense (5180 mg kg−1), but only R. aff. bengalensis has sufficiently high Ni concentrations in biomass to warrant field trials.


Utilising a successional planting strategy, F. trachypison and T. morotaiense could be used to facilitate site conditions, followed by the metal crop R. aff. bengalensis. Using this design, a nickel yield of 330 kg per hectare would be possible every 4 years. In addition to allowing the recovery of nickel, this approach could be an integrated mine site rehabilitation strategy to mitigate environmental impacts, improve soil quality and facilitate transition to other land-uses such as native forest.


Agromining Hyperaccumulator Rhizosphere Ultramafic Nickel 



We acknowledge the financial and operational support from Eramet and PT Weda Bay Nickel to conduct this research. PT Weda Bay Nickel were responsible for all relevant permits in Indonesia and for transporting the plant and soil samples for chemical analysis in France. The French National Research Agency (ANR) through the national “Investissements d’avenir” program (ANR-10-LABX-21, LABEX RESSOURCES21) is acknowledged for funding the PhD scholarship of S. Lopez. The ANR is also acknowledged through the ANR-14-CE04-0005 Project “Agromine” for funding support. A. van der Ent is the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council.

Supplementary material

11104_2019_3954_MOESM1_ESM.docx (78 kb)
ESM 1 (DOCX 77 kb)


  1. Antoniadis V, Levizou E, Shaheenb SM, Ok YS, Sebastian A, Baum C, Prasad MNV, Wenzel WW, Rinklebe J (2017) Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Sci Rev 171:621–645CrossRefGoogle Scholar
  2. Baillie IC, Evangelista PM, Inciong NB (2000) Differentiation of upland soils on the Palawan ophiolitic complex, Philippines. Catena 39(4):283–299CrossRefGoogle Scholar
  3. Ballard HE, de Paula-Souza J, Wahlert GA (2014) Violaceae. In: Kubitzki K (ed) The families and genera of vasular plants. Springer Heidelberg New York, Dorsrecht London, p 331Google Scholar
  4. Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytorem 17:117–127CrossRefGoogle Scholar
  5. Barbaroux R, Mercier G, Blais JF, Morel JL, Simmonot MO (2011) A new method for obtaining nickel metal from the hyperaccumulator plant Alyssum murale. Sep Purif Technol 83:57–65CrossRefGoogle Scholar
  6. Baudoin E, Benizri E, Guckert A (2001) Metabolic structure of bacterial communities from distinct maize rhizosphere compartments. Eur J Soil Biol 37:85–93CrossRefGoogle Scholar
  7. Baudoin E, Benizri E, Guckert A (2002) Impact of growth stage on the bacterial community structure along maize roots, as detemined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145CrossRefGoogle Scholar
  8. Benizri E, Kidd PS (2018) The role of the rhizosphere and microbes associated with hyperaccumulator plants in metal accumulation. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals. Mineral resource reviews. Springer Nature, pp 157–188CrossRefGoogle Scholar
  9. Benizri E, Nguyen C, Piutti S, Slezack-Deschaumes S, Philippot L (2007) Additions of maize root mucilage to soil changed the structure of the bacterial community. Soil Biol Biochem 39:1230–1233CrossRefGoogle Scholar
  10. Brooks RR, Wither ED (1977) Nickel accumulation by Rinorea bengalensis (Wall) O.K. J Geochem Explor 7:295–300CrossRefGoogle Scholar
  11. Butt CRM, Cluzel D (2013) Nickel laterite ore deposits: weathered serpentinites. Elements 9(2):123–128CrossRefGoogle Scholar
  12. Cabello-Conejo MI, Becerra-Castro C, Prieto-Fernández A, Monterroso C, Saavedra-Ferro A, Mench M, Kidd PS (2014) Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant Soil 379:35–50CrossRefGoogle Scholar
  13. Chaney RL, Angle JS, Baker AJM, Li JM (1998) Method for phytomining of Ni, cobalt and other metals from soil. U.S. Patent # 5,711,784Google Scholar
  14. Chaney RL, Baker AJM, Morel JM (2018) The long road to developing agromining/phytomining. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals. Mineral Resource Reviews. Springer. Nature:1–17Google Scholar
  15. Chardot-Jacques V, Calvaruso C, Simon B, Turpault M-P, Echevarria G, Morel JL (2013) Chrysotile dissolution in the rhizosphere of the nickel hyperaccumulator Leptoplax emarginata. Environ Sci Technol 47:2612–2620CrossRefGoogle Scholar
  16. Erskine PD, Lee G, Fogliani B, L’Huillier L, McCoy S (2018) Incorporating hyperaccumulator plants into mine rehabilitation in the Asia-Pacific region. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals. Mineral Resource Reviews. Springer. Nature:189–204Google Scholar
  17. Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of south and Southeast Asia. Bot Stud 58:18CrossRefGoogle Scholar
  18. Gei V, Erskine PD, Harris HH, Echevarria G, Mesjasz-Przybyłowicz J, Barnabas AD, Przybyłowicz WJ, Kopittke PM, van der Ent A (2017) New tools for discovery of hyperaccumulator plant species and understanding their ecophysiology. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants. Mineral Resource Reviews series. , SpringerNature, 117–133 pp.Google Scholar
  19. Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9(2):95–98CrossRefGoogle Scholar
  20. He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends Plant Sci 19:166–174CrossRefGoogle Scholar
  21. Hiltner L (1904) Über neuer Erfahrungen und probleme auf dem gebiet der bodenbakteriologie unter besonderer nerücksichtingung der gründüngung und brache. Arb DLG 98:59–78Google Scholar
  22. Komives T, Gullner G (2006) Dendroremediation: the use of trees in cleaning up polluted soils. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation rhizoremediation, theoretical background. Focus on biotechnology. Springer, Dordrecht, pp 23–31CrossRefGoogle Scholar
  23. Krämer U (2010) Metal Hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefGoogle Scholar
  24. Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker AJM, Reeves RR, Nelkin J (2003) Development of a tehnology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115CrossRefGoogle Scholar
  25. Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  26. Lopez S, Piutti S, Vallance J, Morel JL, Echevarria G, Benizri E (2017) Nickel drives bacterial community diversity in the rhizosphere of the hyperaccumulator Alyssum murale. Soil Biol Biochem 114:121–130CrossRefGoogle Scholar
  27. Lopez S, Goux X, van der Ent A, Erskine PD, Echevarria G, Calusinska M, Morel JL, Benizri E (2019a) Bacterial community diversity in the rhizosphere of nickel hyperaccumulator species of Halmahera Island (Indonesia). Appl Soil Ecol 133:70–80CrossRefGoogle Scholar
  28. Lopez S, Benizri E, Erskine PD, Morel JL, Lee G, Permana E, Echevarria G, van der Ent A (2019b) Biogeochemistry of the flora of Weda Bay, Halmahera Island (Indonesia) focusing on metal hyperaccumulation. J Geochem Explor In PressGoogle Scholar
  29. Macnair M (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105CrossRefGoogle Scholar
  30. Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27CrossRefGoogle Scholar
  31. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396CrossRefGoogle Scholar
  32. Nkrumah PN, Erskine PD, Echevarria G, van der Ent A (2018) Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecol Res 33(3–4):19–38Google Scholar
  33. Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019) The first tropical ‘Metal Farm’: some perspectives from field and pot experiments. J Geochem Explor 198:114–122CrossRefGoogle Scholar
  34. Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566CrossRefGoogle Scholar
  35. Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217–218:8–17CrossRefGoogle Scholar
  36. Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol 6(1–2):105–124CrossRefGoogle Scholar
  37. Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249(1):57–65CrossRefGoogle Scholar
  38. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria, G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, pp 25–52Google Scholar
  39. Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for hyperaccumulator plants of metal and metalloid trace elements. New Phytol 218:407–411CrossRefGoogle Scholar
  40. Saad R, Kobaissi A, Robin C, Echevarria G, Benizri E (2016) Nitrogen fixation and growth of Lens culinaris as affected by nickel availability: a pre-requisite for optimization of agromining. Environ Exp Bot 131:1–9CrossRefGoogle Scholar
  41. Schmitt M, Boras S, Tjoa A, Watanabe T, Jansen S (2016) Aluminium accumulation and intra-tree distribution patterns in three Arbora luminosa (Symplocos) species from Central Sulawesi. PLoS One 1(2):e0149078CrossRefGoogle Scholar
  42. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194CrossRefGoogle Scholar
  43. Tappero R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654CrossRefGoogle Scholar
  44. van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41(4):396–408CrossRefGoogle Scholar
  45. van der Ent A, Reeves RD (2015) Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant Soil 389(1–2):401–418Google Scholar
  46. van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013a) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79CrossRefGoogle Scholar
  47. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013b) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  48. van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson C, Meech J, Erskine PD, Simonnot M-O, Vaughan J, Morel J-L, Echevarria G, Fogliani B, Mulligan D (2015a) Agromining’: farming for metals in the future? Environ Sci Technol 49(8):4773–4780CrossRefGoogle Scholar
  49. van der Ent A, Erskine PD, Sumail S (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259CrossRefGoogle Scholar
  50. van der Ent A, Erskine PD, Mulligan DR, Repin R, Karim R (2016a) Vegetation on ultramafic edaphic islands in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and altitude. Plant Soil 403(1):77–101Google Scholar
  51. van der Ent A, Echevarria G, Tibbett M (2016b) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26(2):67–82CrossRefGoogle Scholar
  52. van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017a) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861CrossRefGoogle Scholar
  53. van der Ent A, Cardace D, Tibbett M, Echevarria G (2017b) Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena 160:154–169Google Scholar
  54. van der Ent A, Mulligan DR, Repin R, Erskine PD (2018a) Foliar elemental profiles in the ultramafic flora of Kinabalu Park (Sabah, Malaysia). Ecol Res 33(3):659–674CrossRefGoogle Scholar
  55. van der Ent A, Mak R, de Jonge MD, Harris HH (2018b) Simultaneous hyperaccumulation of nickel and cobalt in the tree Glochidion cf. sericeum (Phyllanthaceae): elemental distribution and chemical speciation. Sci Rep 8, 9683Google Scholar
  56. Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721CrossRefGoogle Scholar
  57. Zhang X, Houzelot V, Bani A, Morel JL, Echevarria G, Simmonot MO (2014) Selection and combustion of Ni-hyperaccumulators for the phytomining process. Int J Phytorem 16:1058–1072CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Séverine Lopez
    • 1
  • Antony van der Ent
    • 1
    • 2
  • Peter D. Erskine
    • 2
  • Guillaume Echevarria
    • 1
    • 2
  • Jean Louis Morel
    • 1
  • Gavin Lee
    • 3
  • Edi Permana
    • 3
  • Emile Benizri
    • 1
    Email author
  1. 1.INRA, Laboratoire Sols et EnvironnementUniversité de LorraineNancyFrance
  2. 2.Centre for Mined Land Rehabilitation, Sustainable Minerals InstituteThe University of QueenslandBrisbaneAustralia
  3. 3.PT Weda Bay NickelJakartaIndonesia

Personalised recommendations