Alleviation of metal stress by Pseudomonas orientalis and Chaetomium cupreum strains and their effects on Eucalyptus globulus growth promotion

  • J. Ortiz
  • J. Soto
  • L. Almonacid
  • A. Fuentes
  • R. Campos-Vargas
  • C. ArriagadaEmail author
Regular Article



Pseudomonas orientalis and Chaetomium cupreum isolated from metal(oid)s-contaminated soil were characterized to evaluate their role in plant growth promotion and enhance the tolerance of Eucalyptus globulus to copper stress.


We evaluated minimum inhibitory concentration and explored plant-promoting traits under copper stress. Moreover, changes in morphology and the accumulation of metals on the cell surface were determined by scanning electron microscopy images coupled with energy dispersive x-ray spectroscopy (SEM-EDX). The effect of inoculation with P. orientalis and C. cupreum on E. globulus plants established in soils contaminated with copper was determined through root and shoot biomass and antioxidant response.


Both strains showed high tolerance to metal(oid)s, whereas phosphate solubilization was only detected in P. orientalis. Under copper stress, C. cupreum presented a higher production rate of siderophores and indole acetic acid (4.5 mm day−1, 15.042 μg mL−1). SEM images and EDX analysis reflected cellular changes in fungus and proved biosorption of copper. Inoculation of P. orientalis and C. cupreum on Eucalyptus globulus plants significantly increased plant growth and mitigated the toxic effects of copper.


According to these results, both microorganisms contribute positively to stimulated plant growth and to decreasing stress caused by high concentrations of copper in soil, especially C. cupreum.


Metal stress Phytoremediation Soil microorganisms Plant growth promotion 



Financial support of this study was provided by the Fondo Nacional de Desarrollo, Científico y Tecnológico, FONDECYT 1170931, and the Comisión Nacional de Investigación Científica y Tecnológica, CONICYT Doctoral Fellowship 21150615. We thank the Scientific and Technological Bioresource Nucleus BIOREN- UFRO for equipment support. This study is dedicated for the memory of the Professor of Environmental Microbiology, Yoav Bashan (1952–2018) of the Bashan Institute of Science, Auburn, USA.


  1. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals--concepts and applications. Chemosphere 91:869–881. CrossRefGoogle Scholar
  2. Almonacid L, Fuentes A, Ortiz J, Salas C, Garcia-Romera I, Ocampo J, Arriagada C (2015) Effect of mixing soil saprophytic fungi with organic residues on the response of Solanum lycopersicum to arbuscular mycorrhizal fungi. Soil Use Manag 31:155–164. CrossRefGoogle Scholar
  3. Armada E, Probanza A, Roldan A, Azcon R (2016) Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants. J Plant Physiol 192:1–12. CrossRefGoogle Scholar
  4. Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009a) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 100:6250–6257. CrossRefGoogle Scholar
  5. Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009b) Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Chemosphere 77:273–278. CrossRefGoogle Scholar
  6. Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740. CrossRefGoogle Scholar
  7. Bensidhoum L, Nabti E, Tabli N, Kupferschmied P, Weiss A, Rothballer M, Schmid M, Keel C, Hartmann A (2016) Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur J Soil Biol 75:38–46. CrossRefGoogle Scholar
  8. Benyo D et al (2016) Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P. x canadensis. J Plant Physiol 201:62–70. CrossRefGoogle Scholar
  9. Chen W-C, Juang R-S, Wei Y-H (2015) Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J 103:158–169. CrossRefGoogle Scholar
  10. Chen SH, Ng SL, Cheow YL, Ting ASY (2017) A novel study based on adaptive metal tolerance behavior in fungi and SEM-EDX analysis. J Hazard Mater 334:132–141. CrossRefGoogle Scholar
  11. Chiboub M, Saadani O, Fatnassi IC, Abdelkrim S, Abid G, Jebara M, Jebara SH (2016) Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. C R Biol 339:391–398.
  12. Dakora FD, Phillips DA (2002) Root exudates asmediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47CrossRefGoogle Scholar
  13. Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1566–1570CrossRefGoogle Scholar
  14. Fuentes A, Almonacid L, Ocampo JA, Arriagada C (2016) Synergistic interactions between a saprophytic fungal consortium and Rhizophagus irregularis alleviate oxidative stress in plants grown in heavy metal contaminated soil. Plant Soil 407:355–366. CrossRefGoogle Scholar
  15. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119. CrossRefGoogle Scholar
  16. Gasser I, Muller H, Berg G (2009) Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants. FEMS Microbiol Ecol 70:142–150. CrossRefGoogle Scholar
  17. Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncaví Valley, Chile. Chemosphere 41:15–23CrossRefGoogle Scholar
  18. Ginocchio R, Carvallo G, Toro I, Bustamante E, Silva Y, Sepúlveda N (2004) Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environ Pollut 127:343–352. CrossRefGoogle Scholar
  19. Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396. CrossRefGoogle Scholar
  20. Jones DL (1998) Organic acids in the rizosphere - a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  21. Kamran MA, Syed JH, Eqani SA, Munis MF, Chaudhary HJ (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (cd) uptake by Eruca sativa. Environ Sci Pollut Res Int 22:9275–9283. CrossRefGoogle Scholar
  22. Korayem AS, Abdelhafez AA, Zaki MM, Saleh EA (2015) Optimization of biosurfactant production by Streptomyces isolated from Egyptian arid soil using Plackett–Burman design. Ann Agric Sci 60:209–217. Google Scholar
  23. Li WC, Ye ZH, Wong MH (2009) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467. CrossRefGoogle Scholar
  24. Liu W, Yang C, Shi S, Shu W (2014) Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings. Chemosphere 97:47–53. CrossRefGoogle Scholar
  25. Luo J, Qi S, Peng L, Xie X (2017) Enhanced phytoremediation capacity of a mixed-species plantation of Eucalyptus globulus and Chickpeas. J Geochem Explor 182:201–205. CrossRefGoogle Scholar
  26. Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. CrossRefGoogle Scholar
  27. Machuca A, Milagres AMF (2003) Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett Appl Microbiol 36:177–181CrossRefGoogle Scholar
  28. Milagres A, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6CrossRefGoogle Scholar
  29. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653. CrossRefGoogle Scholar
  30. Mishra A, Malik A (2012) Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Res 46:4991–4998. CrossRefGoogle Scholar
  31. Moreira H, Pereira SIA, Marques APGC, Rangel AOSS, Castro PML (2016) Selection of metal resistant plant growth promoting rhizobacteria for the growth and metal accumulation of energy maize in a mine soil — effect of the inoculum size. Geoderma 278:1–11. CrossRefGoogle Scholar
  32. Onyia CE, Anyanwu CU, Onuigbo AC, Mbegbu EC (2014) Impact of heavy metals and initial pH variations on the phosphate solubilizing fungi (PSF) isolated from Nsukka pepper and gardenegg plants rhizosphere. IOSR J Pharm Biol Sci 9:33–39. Google Scholar
  33. Plassard C, Fransson P (2009) Regulation of low-molecular weight organic acid production in fungi Fungal. Biol Rev 23:30–39. Google Scholar
  34. Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. CrossRefGoogle Scholar
  35. Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574. CrossRefGoogle Scholar
  36. Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41. CrossRefGoogle Scholar
  37. San Keskin NO, Han D, Devrim Ozkan A, Angun P, Onarman Umu OC, Tekinay T (2015) Production and structural characterization of biosurfactant produced by newly isolated Staphylococcus xylosus STF1 from petroleum contaminated soil. J Pet Sci Eng 133:689–694. CrossRefGoogle Scholar
  38. Sari M, Kusharyoto W, Artika IM (2014) Screening for biosurfactant - producing yeast: confirmation of biosurfactant production. Biotechnology 13:106–111CrossRefGoogle Scholar
  39. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. CrossRefGoogle Scholar
  40. Singh H, Reddy MS (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur J Soil Biol 47:30–34. CrossRefGoogle Scholar
  41. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. CrossRefGoogle Scholar
  42. Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B: Biointerfaces 85:174–181. CrossRefGoogle Scholar
  43. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40. CrossRefGoogle Scholar
  44. Velioglu Z, Ozturk Urek R (2015) Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation. J Biosci Bioeng 120:526–531. CrossRefGoogle Scholar
  45. Wang H, Xu R, You L, Zhong G (2013) Characterization of cu-tolerant bacteria and definition of their role in promotion of growth, cu accumulation and reduction of cu toxicity in Triticum aestivum L. Ecotoxicol Environ Saf 94:1–7. CrossRefGoogle Scholar
  46. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  47. Widden P, Bisset J (1972) An automatic multichamber soil washing apparatus for removing fungal spores from soil. Can J Microbiol 18:1399–1404CrossRefGoogle Scholar
  48. Xie X, Fu J, Wang H, Liu J (2010) Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China. Afr J Biotechnol 9:4056–4066Google Scholar
  49. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561. CrossRefGoogle Scholar
  50. Zahoor M, Irshad M, Rahman H, Qasim M, Afridi SG, Qadir M, Hussain A (2017) Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicol Environ Saf 142:139–149. CrossRefGoogle Scholar
  51. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997. CrossRefGoogle Scholar
  52. Zengerer V, Schmid M, Bieri M, Muller DC, Remus-Emsermann MNP, Ahrens CH, Pelludat C (2018) Pseudomonas orientalis F9: a potent antagonist against Phytopathogens with phytotoxic effect in the apple flower. Front Microbiol 9:145. CrossRefGoogle Scholar
  53. Zhang H, Yang Q (2007) Expressed sequence tags-based identification of genes in the biocontrol agent Chaetomium cupreum. Appl Microbiol Biotechnol 74:650–658. CrossRefGoogle Scholar
  54. Zouari M, Ben Ahmed C, Elloumi N, Bellassoued K, Delmail D, Labrousse P, Ben Abdallah F, Ben Rouina B (2016) Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicol Environ Saf 128:195–205. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y ForestalesUniversidad de La FronteraTemucoChile
  2. 2.Programa de Doctorado en Ciencias Mención Biología Celular y Molecular AplicadaUniversidad de La FronteraTemucoChile
  3. 3.Facultad de Ciencias Biológicas, Centro de Biotecnología VegetalUniversidad Andrés BelloSantiagoChile

Personalised recommendations