Advertisement

Sequestration of Mn into the cell wall contributes to Mn tolerance in sugarcane (Saccharum officinarum L.)

  • Shu Yang
  • Ke Yi
  • Min Min Chang
  • Gui Zhi Ling
  • Zun Kang Zhao
  • Xiao Feng LiEmail author
Regular Article
  • 89 Downloads

Abstract

Aims

Sugarcane (Saccharum officinarum L.) grown on acid soils suffers serious chlorosis resulting from excess manganese (Mn). We explored the mechanisms underlying sugarcane tolerance to excess Mn.

Methods

Seedlings of genotypes YC96–66 (66) and YC58–21 (21) were cultured hydroponically with MnCl2, then Mn effects on leaf chlorophyll concentration, Mn subcellular distribution, cell wall polysaccharides were determined. A Mn adsorption kinetics assay was also conducted to examine the association of Mn-induced pectin modification with Mn-binding to cell walls.

Results

Excess Mn caused significant dose- and time-dependent decrease in chlorophyll, with serious chlorosis in genotype 21 compared to 66. Genotype 66 absorbed more Mn and maintained higher leaf Mn, with greater proportions of Mn retained in cell walls. Up to 93.2% and 90.0% of cell wall-bound Mn was found in the pectin fraction in genotype 66 and 21, respectively. Mn induced pectin accumulation and pectin methylesterase activation, along with a decrease in the degree of pectin methylesterification, which thereby enhanced cell wall Mn-binding capacity in genotype 66. In contrast, no remarkable change was observed in genotype 21.

Conclusions

Mn-induced pectin accumulation, pectin demethylesterification and subsequent sequestration of Mn into the cell wall contribute to Mn tolerance in the sugarcane.

Keywords

Cell wall Chlorosis Mn Mn-sequestration Pectin Sugarcane 

Notes

Acknowledgements

This study is supported by the National Natural Science Foundation of China (grant No.31260497, 31660593), Guangxi Natural Science Foundation (grant No. 2016GXNSFDA380038) and the Innovation Project of Guangxi Graduate Education (YCBZ2017013, YCSW2018039).

References

  1. Alam S, Kamei S, Kawai S (2000) Phytosiderophore release from manganese-induced iron deficiency in barley. J Plant Nutr 23:1193–1207.  https://doi.org/10.1080/01904160009382092 CrossRefGoogle Scholar
  2. Anthon GE, Barrett DM (2004) Comparison of three colorimetric reagents in the determination of methanol with alcohol oxidase. Application to the assay of pectin methylesterase J Agric Food Chem 52:3749–3753.  https://doi.org/10.1021/jf035284w CrossRefGoogle Scholar
  3. Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Yusuyin Y, Iwasaki K, Kato S, Maeshima M, Ma JF, Ueno D (2013) Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J Exp Bot 64:4375–4387.  https://doi.org/10.1093/jxb/ert243 CrossRefGoogle Scholar
  4. Chen Z, Sun L, Liu P, Liu G, Tian J, Liao H (2015) Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis. Plant Physiol 167:176–188.  https://doi.org/10.1104/pp.114.251017 CrossRefGoogle Scholar
  5. Colzi I, Arnetoli M, Gallo A, Doumett S, Del Bubba M, Pignattelli S, Gabbrielli R, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ Exp Bot 78:91–98.  https://doi.org/10.1016/j.envexpbot.2011.12.028
  6. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861.  https://doi.org/10.1038/nrm1746 CrossRefGoogle Scholar
  7. Csatorday K, Gombos Z, Szalontai B (1984) Mn and co toxicity in chlorophyll biosynthesis. Proc Natl Acad Sci U S A 81:476–478 https://www.ncbi.nlm.nih.gov/pubmed/16593408 CrossRefGoogle Scholar
  8. Culvenor R (1985) Tolerance of Phalaris aquatica L. lines and some other agricultural species to excess manganese, and the effect of aluminium on manganese tolerance in P. aquatica. Aust J Agric Res 36:695–708.  https://doi.org/10.1071/AR9850695 CrossRefGoogle Scholar
  9. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51:198–210.  https://doi.org/10.1111/j.1365-313X.2007.03138.x CrossRefGoogle Scholar
  10. Douchiche O, Soret-Morvan O, Chaibi W, Morvan C, Paynel F (2010) Characteristics of cadmium tolerance in ‘Hermes’ flax seedlings: contribution of cell walls. Chemosphere 81:1430–1436.  https://doi.org/10.1016/j.chemosphere.2010.09.011 CrossRefGoogle Scholar
  11. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356.  https://doi.org/10.1021/ac60111a017 CrossRefGoogle Scholar
  12. Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133:1935–1946.  https://doi.org/10.1104/pp.103.029215 CrossRefGoogle Scholar
  13. Fernando DR, Lynch JP (2015) Manganese phytotoxicity: new light on an old problem. Ann Bot 116:313–319.  https://doi.org/10.1093/aob/mcv111 CrossRefGoogle Scholar
  14. Fernando DR, Moroni SJ, Scott BJ, Conyers MK, Lynch JP, Marshall AT (2016) Temperature and light drive manganese accumulation and stress in crops across three major plant families. Environ Exp Bot 132:66–79.  https://doi.org/10.1016/j.envexpbot.2016.08.008 CrossRefGoogle Scholar
  15. Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:511–566.  https://doi.org/10.1146/annurev.pp.29.060178.002455 CrossRefGoogle Scholar
  16. Fuhrs H, Behrens C, Gallien S, Heintz D, Van Dorsselaer A, Braun HP, Horst WJ (2010) Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeum vulgare). Ann Bot 105:1129–1140.  https://doi.org/10.1093/aob/mcq046
  17. Gonzalez A, Lynch J (1999) Tolerance of tropical common bean genotypes to manganese toxicity: performance under different growing conditions. J Plant Nutr 22:511–525.  https://doi.org/10.1080/01904169909365648 CrossRefGoogle Scholar
  18. Gonzalez A, Steffen KL, Lynch JP (1998) Light and excess manganese . Implications for oxidative stress in common bean. Plant Physiol 118:493–504.  https://doi.org/10.1104/Pp.118.2.493 CrossRefGoogle Scholar
  19. Hauck M, Paul A, Gross S, Raubuch M (2003) Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ Exp Bot 49:181–191.  https://doi.org/10.1016/S0098-8472(02)00069-2 CrossRefGoogle Scholar
  20. Horst WJ, Fecht M, Naumann A, Wissemeier AH, Maier P (1999) Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J Plant Nutr Soil Sc 162:263–274.  https://doi.org/10.1002/(Sici)1522-2624(199906)162:3<263::Aid-Jpln263>3.0.Co;2-A CrossRefGoogle Scholar
  21. Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197.  https://doi.org/10.1093/aob/mcq053 CrossRefGoogle Scholar
  22. Huang YL, Yang S, Long GX, Zhao ZK, Li XF, Gu MH (2016) Manganese toxicity in sugarcane plantlets grown on acidic soils of southern China. PLoS One 11:e0148956.  https://doi.org/10.1371/journal.pone.0148956 CrossRefGoogle Scholar
  23. Khotimchenko MY, Kolenchenko EA, Khotimchenko YS (2008) Zinc-binding activity of different pectin compounds in aqueous solutions. J Colloid Interface Sci 323:216–222.  https://doi.org/10.1016/j.jcis.2008.04.013 CrossRefGoogle Scholar
  24. Konno H, Nakato T, Nakashima S, Katoh K (2005) Lygodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot 56:1923–1931.  https://doi.org/10.1093/jxb/eri187 CrossRefGoogle Scholar
  25. Konno H, Nakashima S, Katoh K (2010) Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema. J Plant Physiol 167:358–364.  https://doi.org/10.1016/j.jplph.2009.09.011 CrossRefGoogle Scholar
  26. Krzeslowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51.  https://doi.org/10.1007/s11738-010-0581-z CrossRefGoogle Scholar
  27. Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166.  https://doi.org/10.3390/plants4010112 CrossRefGoogle Scholar
  28. Li P, Song A, Li ZJ, Fan FL, Liang YC (2015) Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Plant Soil 397:289–301.  https://doi.org/10.1007/s11104-015-2626-y CrossRefGoogle Scholar
  29. Li X, Li Y, Qu M, Xiao H, Feng Y, Liu J, Wu L, Yu M (2016) Cell wall pectin and its methyl-esterification in transition zone determine Al resistance in cultivars of pea (Pisum sativum). Front Plant Sci 7:39.  https://doi.org/10.3389/fpls.2016.00039 Google Scholar
  30. Li XW, Liu JY, Fang J, Tao L, Shen RF, Li YL, Xiao HD, Feng YM, Wen HX, Guan JH, Wu LS, He YM, Goldbach HE, Yu M (2017) Boron supply enhances aluminum tolerance in root border cells of pea (Pisum sativum) by interacting with cell wall pectins. Front Plant Sci 8:742.  https://doi.org/10.3389/fpls.2017.00742 CrossRefGoogle Scholar
  31. Liu J, Duan CQ, Zhang XH, Zhu YN, Hu C (2009) Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant Soil 322:187–195.  https://doi.org/10.1007/s11104-009-9907-2 CrossRefGoogle Scholar
  32. Mora MD, Rosas A, Ribera A, Rengel Z (2009) Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 320:79–89.  https://doi.org/10.1007/s11104-008-9872-1 CrossRefGoogle Scholar
  33. Muschitz A, Riou C, Mollet JC, Gloaguen V, Faugeron C (2015) Modifications of cell wall pectin in tomato cell suspension in response to cadmium and zinc. Acta Physiol Plant 37:245.  https://doi.org/10.1007/s11738-015-2000-y CrossRefGoogle Scholar
  34. Oikawa PY, Giebel BM, Sternberg Lda S, Li L, Timko MP, Swart PK, Riemer DD, Mak JE, Lerdau MT (2011) Leaf and root pectin methylesterase activity and 13C/12C stable isotopic ratio measurements of methanol emissions give insight into methanol production in Lycopersicon esculentum. New Phytol 191:1031–1040.  https://doi.org/10.1111/j.1469-8137.2011.03770.x CrossRefGoogle Scholar
  35. Panda S, Mishra AK, Biswal UC (1987) Manganese induced peroxidation of thylakoid lipids and changes in chlorophyll-α fluorescence during aging of cell free chloroplasts in light. Phytochemistry 26:3217–3219.  https://doi.org/10.1016/S0031-9422(00)82472-3 CrossRefGoogle Scholar
  36. Pedas P, Schiller Stokholm M, Hegelund JN, Ladegard AH, Schjoerring JK, Husted S (2014) Golgi localized barley MTP8 proteins facilitate Mn transport. PLoS One 9:e113759.  https://doi.org/10.1371/journal.pone.0113759 CrossRefGoogle Scholar
  37. Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJ, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci U S A 104:8532–8537.  https://doi.org/10.1073/pnas.0609507104 CrossRefGoogle Scholar
  38. Santos EF, Kondo Santini JM, Paixao AP, Junior EF, Lavres J, Campos M, Reis AR (2017) Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol Biochem 113:6–19.  https://doi.org/10.1016/j.plaphy.2017.01.022 CrossRefGoogle Scholar
  39. Schmohl N, Horst WJ (2000) Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Environ 23:735–742.  https://doi.org/10.1046/j.1365-3040.2000.00591.x CrossRefGoogle Scholar
  40. Schmohl N, Pilling J, Fisahn J, Horst WJ (2000) Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol Plant 109:419–427.  https://doi.org/10.1034/j.1399-3054.2000.100408.x CrossRefGoogle Scholar
  41. Shao JF, Yamaji N, Shen RF, Ma JF (2017) The key to Mn homeostasis inplants: regulation of Mn transporters. Trends Plant Sci 22:215–224.  https://doi.org/10.1016/j.tplants.2016.12.005 CrossRefGoogle Scholar
  42. Sheng H, Zeng J, Liu Y, Wang X, Wang Y, Kang H, Fan X, Sha L, Zhang H, Zhou Y (2016) Sulfur mediated alleviation of Mn toxicity in polish wheat relates to regulating Mn allocation and improving antioxidant system. Front Plant Sci 7:1382.  https://doi.org/10.3389/fpls.2016.01382 CrossRefGoogle Scholar
  43. St Clair SB, Lynch JP (2004) Photosynthetic and antioxidant enzyme responses of sugar maple and red maple seedlings to excess manganese in contrasting light environments. Funct Plant Biol 31:1005–1014.  https://doi.org/10.1071/FP04049 CrossRefGoogle Scholar
  44. Sun C, Lu L, Yu Y, Liu L, Hu Y, Ye Y, Jin C, Lin X (2016) Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots. J Exp Bot 67:979–989.  https://doi.org/10.1093/jxb/erv514 CrossRefGoogle Scholar
  45. Takemoto Y, Tsunemitsu Y, Fujii-Kashino M, Mitani-Ueno N, Yamaji N, Ma JF, Kato SI, Iwasaki K, Ueno D (2017) The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant Cell Physiol 58:1573–1582.  https://doi.org/10.1093/pcp/pcx082 CrossRefGoogle Scholar
  46. Tsunemitsu Y, Yamaji N, Ma JF, Kato SI, Iwasaki K, Ueno D (2018) Rice reduces Mn uptake in response to Mn stress. Plant Signal Behav 13:e1422466.  https://doi.org/10.1080/15592324.2017.1422466 CrossRefGoogle Scholar
  47. Ueno D, Sasaki A, Yamaji N, Miyaji T, Fujii Y, Takemoto Y, Moriyama S, Che J, Moriyama Y, Iwasaki K, Ma JF (2015) A polarly localized transporter for efficient manganese uptake in rice. Nat Plants 1:15170.  https://doi.org/10.1038/nplants.2015.170 CrossRefGoogle Scholar
  48. Wissemeier AH, Diening A, Hergenröder A, Horst WJ, Mix-Wagner G (1992) Callose formation as parameter for assessing genotypical plant tolerance of aluminium and manganese. Plant Soil 146:67–75.  https://doi.org/10.1007/bf00011997 CrossRefGoogle Scholar
  49. Wu Z, Liang F, Hong B, Young JC, Sussman MR, Harper JF, Sze H (2002) An endoplasmic reticulum-bound Ca2+/Mn2+ pump, ECA1, supports plant growth and confers tolerance to Mn2+ stress. Plant Physiol 130:128–137.  https://doi.org/10.1104/pp.004440 CrossRefGoogle Scholar
  50. Xu SS, Lin SZ, Lai ZX (2015a) Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls. Plant Soil 392:71–85.  https://doi.org/10.1007/s11104-015-2443-3 CrossRefGoogle Scholar
  51. Xu XH, Yang JJ, Zhao XY, Zhang XS, Li RY (2015b) Molecular binding mechanisms of manganese to the root cell wall of Phytolacca americana L. using multiple spectroscopic techniques. J Hazard Mater 296:185–191.  https://doi.org/10.1016/j.jhazmat.2015.04.054 CrossRefGoogle Scholar
  52. Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611.  https://doi.org/10.1104/pp.107.111989 CrossRefGoogle Scholar
  53. Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ (2011) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892.  https://doi.org/10.1104/pp.111.172221 CrossRefGoogle Scholar
  54. Yang XY, Zeng ZH, Yan JY, Fan W, Bian HW, Zhu MY, Yang JL, Zheng SJ (2013) Association of specific pectin methylesterases with Al-induced root elongation inhibition in rice. Physiol Plant 148:502–511.  https://doi.org/10.1111/ppl.12005 CrossRefGoogle Scholar
  55. Yang J, Qu M, Fang J, Shen RF, Feng YM, Liu JY, Bian JF, Wu LS, He YM, Yu M (2016) Alkali-soluble pectin is the primary target of aluminum immobilization in root border cells of pea (Pisum sativum). Front Plant Sci 7:1297.  https://doi.org/10.3389/fpls.2016.01297 Google Scholar
  56. Ye YQ, Jin CW, Fan SK, Mao QQ, Sun CL, Yu Y, Lin XY (2015) Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Sci Rep 5:10746.  https://doi.org/10.1038/srep10746 CrossRefGoogle Scholar
  57. Zambrosi FCB, Mesquita GL, Marchiori PER, Tanaka FAO, Machado EC, Ribeiro RV (2016) Anatomical and physiological bases of sugarcane tolerance to manganese toxicity. Environ Exp Bot 132:100–112.  https://doi.org/10.1016/j.envexpbot.2016.08.011 CrossRefGoogle Scholar
  58. Zhao Y, Wu J, Shang D, Ning J, Zhai Y, Sheng X, Ding H (2015) Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis. Food Chem 168:48–54.  https://doi.org/10.1016/j.foodchem.2014.07.054 CrossRefGoogle Scholar
  59. Zheng SJ, Lin XY, Yang JL, Liu Q, Tang CX (2004) The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistant wheat (Triticum aestivum L.) cultivar. Plant Soil 261:85–90.  https://doi.org/10.1023/B:PLSO.0000035576.71760.2b CrossRefGoogle Scholar
  60. Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ (2012) Cell wall polysaccharides are involved in P-deficiency-induced cd exclusion in Arabidopsis thaliana. Planta 236:989–997.  https://doi.org/10.1007/s00425-012-1652-8 CrossRefGoogle Scholar
  61. Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater 263:398–403.  https://doi.org/10.1016/j.jhazmat.2013.09.018 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shu Yang
    • 1
    • 2
  • Ke Yi
    • 1
    • 2
  • Min Min Chang
    • 1
    • 2
  • Gui Zhi Ling
    • 1
    • 2
    • 4
  • Zun Kang Zhao
    • 1
    • 2
  • Xiao Feng Li
    • 1
    • 2
    • 3
    Email author
  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of AgricultureGuangxi UniversityNanningChina
  2. 2.Guangxi Key Laboratory for Sugarcane BiologyGuangxi UniversityNanningChina
  3. 3.Province and Ministry Cosponsored Collaborative Innovation Center of Sugar IndustryGuangxi UniversityNanningChina
  4. 4.National Demonstration Center of Experimental Plant Science EducationGuangxi UniversityNanningChina

Personalised recommendations