Advertisement

Plant and Soil

, Volume 434, Issue 1–2, pp 413–424 | Cite as

Echinochloa stagnina improves soil structure and phytodesalinization of irrigated saline sodic Vertisols

  • Maman Nassirou AdoEmail author
  • Didier Michot
  • Yadji Guero
  • Vincent Hallaire
  • Nomaou Dan Lamso
  • Gilles Dutin
  • Christian Walter
Regular Article
  • 26 Downloads

Abstract

Aim

This study tested the capacity of the semi-aquatic grass Echinochloa stagnina to grow on highly salt-affected soil to improve soil structure and decrease salinity of saline Vertisols.

Methods

The experimental study, conducted over 11 months on soil columns in laboratory conditions, tested three treatments: i) ponded bare soil without crops (CT), ii) soil cultivated with E. stagnina (CEs) in two successive cropping seasons and (iii) soil permanently cultivated with E. stagnina (CEp) with a staggered harvest.

Results

Soil porosity increased when cultivated with E. stagnina but remained constant under bare soil. At the end of the experiment, soil cultivated with E. stagnina had higher macroporosity (6–9%) than bare soil (3–4%), linked mainly to root development. Moreover, salt stock, which was initially similar in the columns, decreased by 65–87% in soil cultivated with E. stagnina and by 34–45% in ponded bare soil. Salt accumulation in plant biomass contributed 22–35% of soil desalinization vs 65–78% due to leaching. In addition, E. stagnina produced 10–12 t.ha−1 (dry weight) of forage in 11 months, which makes it of economic interest for farmers.

Conclusions

An irrigated E. stagnina crop appears effective at improving physical properties and reducing salinity of Vertisols and also at producing forage. Future studies must be performed with modeling approaches that use hydrodynamic parameters to characterize phytodesalinization of Vertisols by E. stagnina.

Keywords

Vertisols Soil salinity Soil structure Phytodesalinization 

Supplementary material

11104_2018_3853_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 13 kb)
11104_2018_3853_MOESM2_ESM.docx (13 kb)
ESM 2 (DOCX 12 kb)
11104_2018_3853_MOESM3_ESM.docx (14 kb)
ESM 3 (DOCX 13 kb)
11104_2018_3853_MOESM4_ESM.docx (90 kb)
ESM 4 (DOCX 89.5 kb)

References

  1. Adam I (2011) Cartographie fine et suivi détaillé de la salinité des sols d’un périmètre irrigué au Niger en vue de leur remédiation. Doctoral thesis. Université Abdou Moumouni de Niamey (Niger) and Agrocampus Ouest de Rennes, France, 219 pp.Google Scholar
  2. Adam I, Michot D, Guero Y, Soubeiga B, Moussa I, Walter C (2012) Detecting soil salinity changes in irrigated Vertisols by electrical resistivity prospection during a desalinization experiment. Agric Water Manag 109:1–10CrossRefGoogle Scholar
  3. Ado MN, Guéro Y, Michot D, Soubeiga B, Kiesse TS, Walter C (2016) Phytodesalinization of irrigated saline Vertisols in the Niger Valley by Echinochloa stagnina. Agric Water Manag 177:229–240CrossRefGoogle Scholar
  4. AFNOR (1996) Norme NF ISO 11265. Détermination de la conductivité électrique spécifique. In: Qualité des sols, Recueil de normes françaises, 3éme édition, Paris-La défenseGoogle Scholar
  5. Akhter J, Murray R, Mahmood K, Malik KA, Ahmed S (2004) Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant Soil 258:207–216CrossRefGoogle Scholar
  6. Ammari TG, Tahboub AB, Saoub HM, Hattar BI, Al-Zubi YA (2008) Salt removal efficiency as influenced by phyto-amelioration of salt-affected soils. J Food Agric Environ 6:456–460Google Scholar
  7. Aydemir S, Sünger H (2011) Bioreclamation effect and growth of a leguminous forage plant (Lotus corniculatus) in calcareous saline-sodic soil. Afr J Biotechnol 10:15571–15577CrossRefGoogle Scholar
  8. Barbiero L, Valles V, Régeard A, Cheverry C (2001) Residual alkalinity as tracer to estimate the changes induced by forage cultivation in a non-saline irrigated sodic soil. Agric Water Manag 50:229–241CrossRefGoogle Scholar
  9. Blanchart E, Albrecht A, Chevallier T, Barakat M, Hartmann C, Heulin T, Larré-Larrouy (2004) The respective roles of roots and earthworms in restoring physical properties of Vertisols under a Digitaria decumbens pasture (Martinique, WI). Agric Ecosyst Environ 103:343–355CrossRefGoogle Scholar
  10. Bottinelli N, Hallaire V, Goutal N, Bonnaud P, Ranger J (2014) Impact of heavy traffic on soil macroporosity of two silty forest soils: initial effect and short-term recovery. Geoderma 217:10–17CrossRefGoogle Scholar
  11. Cabidoche YM, Guillaume P, Hartmann C, Ruy S, Blanchart E, Albrecht A, Mahieu M, Achouak W, Heulin T, Villemin G, Watteau F, Bellier G (2000) Déterminants biologiques du système poral de Vertisols cultivés (Petites Antilles): conséquences sur la disponibilité de l'eau des sols pour les plantes. Etude et Gestion des Sols 7:329–352Google Scholar
  12. Chessel D, Dufour A B (2008) Modèles logistiques, Rapport utilisant le logiciel R. pp 9Google Scholar
  13. Dieter G, Hassane D (2001) Profil fourrager au Niger. Rapport FAO pp 25Google Scholar
  14. FAO (2014) World reference base for soil resources: international soil classification system for naming soils and creating legends for soil maps, Rome, ItalyGoogle Scholar
  15. Gaudart J, Giorgi R, Thalabard JC, Thiam D, Whegang S (2010) Modèles linéaires à effets mixtes 11 p.Gharaibeh M a, Rusan M J, Eltaif N I, Shunnar O F (2014) reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum. Appl Water Sci 4:223–230Google Scholar
  16. Gharaibeh MA, Rusan MJ, Eltaif NI, Shunnar OF (2014) Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum. Appl Water Sci 4:223–230CrossRefGoogle Scholar
  17. Guéro Y (2000) Contribution à l’étude des mécanismes de dégradation physico-chimique des sols sous climat sahélien. Exemple pris dans la vallée du moyen Niger. Doctoral thesis. Université Abdou Moumouni de Niamey, NigerGoogle Scholar
  18. Jesus JM, Danko AS, Fiúza A, Borges MT (2015) Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res 22:6511–6525CrossRefGoogle Scholar
  19. Lamandé M, Hallaire V, Curmi P, Péres G, Cluzeau D (2003) Changes of pore morphology, infiltration and earthworm community in a loamy soil under different agricultural managements. Catena 54:637–649CrossRefGoogle Scholar
  20. Li JH, Li L, Chen R, Li DQ (2016) Cracking and vertical preferential flow through landfill clay liners. Eng Geol 206:33–41CrossRefGoogle Scholar
  21. Logsdon, S D (2013) Root effects on soil properties and processes: synthesis and future research needs. In Enhancing understanding and quantification of soil–root growth interactions. Timlin D, Ahuja L R (Eds.). Advances in agricultural systems modeling, vol. 4: 173–196Google Scholar
  22. Marlet S (2005) Evolution des systèmes d'irrigation et gestion de la salinité des terres irriguées. Séminaire sur la modernisation de l'agriculture irriguée, RabatGoogle Scholar
  23. Nouri H, Borujenib SC, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Saf Environ Prot 107:94–107CrossRefGoogle Scholar
  24. Oicha T, Cornelis W M, Verplancke H, Nyssen J, Govaerts B, Behailu M, Haile M, Deckers J (2010) Short-term effects of conservation agriculture on Vertisols under tef (Eragrostis tef (Zucc.) Trotter) in the northern Ethiopian highlands. Soil Tillage Res 106:294–302Google Scholar
  25. Paine CE, Marthews TR, Vogt DR, Purves D, Rees M, Hector A, Turnbull LA (2012) How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol Evol 3:245–256CrossRefGoogle Scholar
  26. Pinheiro J, Bates D., DebRoy S, Sarkar D, (2009) nlme: linear and nonlinear mixed effects models, R package version 3Google Scholar
  27. Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521CrossRefGoogle Scholar
  28. Qadir M, Steffens D, Yan F, Schubert S (2003) Sodium removal from a calcareous saline-sodic soil through leaching and plant uptake during phytoremediation. Land Degrad Dev 14:301–307CrossRefGoogle Scholar
  29. Qadir M, Oster JD, Schubert S, Noble AD, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247CrossRefGoogle Scholar
  30. Rabhi M, Karray-Bouraoui N, Medini R, Attia H, Attia H, Athar HUR, Abdelly C, Smaoui A (2010) Seasonal variations in phytodesalination capacity of two perennial halophytes in their natural biotope. J Biol Res (Thessaloniki) 14:181–189Google Scholar
  31. Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664CrossRefGoogle Scholar
  32. Singh A and Ward O P (2004) Applied bioremediation and phytoremediation. Springer publicationGoogle Scholar
  33. Tan JL, Kang YH (2009) Changes in soil properties under the influences of cropping and drip irrigation during the reclamation of severe salt-affected soils. Agric Sci China 8(10):1228–1237CrossRefGoogle Scholar
  34. Vezzani FM, Anderson C, Meenken E, Gillespie R, Peterson M, Beare MH (2018) The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil Tillage Res 175:139–149CrossRefGoogle Scholar
  35. Yan K, Xu H, Zhao S, Shan J, Chen X (2016) Saline soil desalination by honeysuckle (Lonicera japonica Thunb.) depends on salt resistance mechanism. Ecol Eng 88:226–231CrossRefGoogle Scholar
  36. Zhao Z, Zhang K, Wang P, Wang L, Wang L, Yin CH, Tian CY (2013) The effects of halophytes on salt balance in an arid irrigation district. J Food Agric Environ 11:2669–2673Google Scholar
  37. Zorrig WRM, Ferchichi S, Smaoui A, Abdelly C (2012) Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. J Arid Land Stud 22:299–302Google Scholar
  38. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. statistics for biology and health. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maman Nassirou Ado
    • 1
    • 2
    Email author
  • Didier Michot
    • 2
  • Yadji Guero
    • 1
  • Vincent Hallaire
    • 2
  • Nomaou Dan Lamso
    • 1
  • Gilles Dutin
    • 2
  • Christian Walter
    • 2
  1. 1.Département Science du Sol, Faculté d’AgronomieUniversité Abdou Moumouni de NiameyNiameyNiger
  2. 2.SAS, INRA, AGROCAMPUS OUESTRennesFrance

Personalised recommendations