Plant and Soil

, Volume 430, Issue 1–2, pp 361–379 | Cite as

Inoculation of Brassica napus L. (canola) with Pseudomonas fluorescens DUS1-27 leads to inhibition of plant growth due to accumulation of hydrogen peroxide

  • L. Hudek
  • A. Enez
  • W. A. J. Webster
  • D. Premachandra
  • L. BräuEmail author
Regular Article



A Pseudomonas fluorescens DUS1–27 isolate was screened for its effect on Brassica napus L. growth over 14 days in a soil-based system and a hydroponic system. Bacterial inoculation enhanced overall plant biomass in the soil-based system, however, plant biomass was reduced in the hydroponic system. Here, we investigate the probable cause for the contrasting plant growth observed for the two systems.


Using 3,3′-Diaminobenzadine, total peroxidase activity was visualised in roots of B. napus, and quantified in soil and hydroponic growth media. Amperometry was used to quantify levels of H2O2 in the hydroponic growth media. Quantitative real-time PCR was used to determine catalase gene expression levels in both B. napus roots and P. fluorescens.


Total peroxidase activity and H2O2 levels in the hydroponic growth media were higher in plants inoculated with the P. fluorescens isolate. Catalase gene expression in B. napus and P. fluorescens was up-regulated in both organisms when co-cultured in a hydroponic system.


Pseudomonas fluorescens is capable of enhancing the growth of B. napus in a soil-based system, whereas in a hydroponic system its addition leads to growth inhibition due to the increased levels of H2O2 in the system.


Reactive oxygen species (ROS) Hydrogen peroxide (H2O2Peroxidase Catalase PGPB Canola 


  1. Alhasawi A, Castonguay Z, Appanna ND, Auger C, Appanna VD (2015) Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens. Microbiol Res 171:26–31. CrossRefPubMedGoogle Scholar
  2. Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang XX, Altamirano-Junqueira AE, Johnson LJ, Rainey PB, Jackson RW (2014) The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ Microbiol 16:2267–2281. CrossRefPubMedGoogle Scholar
  3. Alström S (1987) Factors associated with detrimental effects of rhizobacteria on plant growth. Plant Soil 102:3–9. CrossRefGoogle Scholar
  4. Ambrosini A, de Souza R, Passaglia LM (2016) Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400:193–207. CrossRefGoogle Scholar
  5. Andrio E, Marino D, Marmeys A, de Segonzac MD, Damiani I, Genre A, Huguet S, Frendo P, Puppo A, Pauly N (2013) Hydrogen peroxide-regulated genes in the Medicago truncatulaSinorhizobium meliloti symbiosis. New Phytol 198:179–189. CrossRefPubMedGoogle Scholar
  6. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. CrossRefGoogle Scholar
  7. Åström B, Gustafsson A, Gerhardson B (1993) Characteristics of a plant deleterious rhizosphere pseudomonad and its inhibitory metabolite (s). J Appl Bacteriol 74:20–28. CrossRefGoogle Scholar
  8. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543. CrossRefPubMedGoogle Scholar
  9. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240. CrossRefPubMedGoogle Scholar
  10. Belimov A, Dodd I, Safronova V, Hontzeas N, Davies W (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495. CrossRefPubMedGoogle Scholar
  11. Berggren I, Alström S, Mårtensson AM (2001) Deleterious properties of certain rhizosphere bacteria on field pea (Pisum sativum) under gnotobiotic and non-sterile conditions. Appl Soil Ecol 16:169–177. CrossRefGoogle Scholar
  12. Bignucolo A, Appanna VP, Thomas SC, Auger C, Han S, Omri A, Appanna VD (2013) Hydrogen peroxide stress provokes a metabolic reprogramming in Pseudomonas fluorescens: enhanced production of pyruvate. J Biotechnol 167:309–315. CrossRefPubMedGoogle Scholar
  13. Bihani SC, Chakravarty D, Ballal A (2016) Kat B, a cyanobacterial Mn-catalase with unique active site configuration: implications for enzyme function. Free Radical Bio Med 93:118–129. CrossRefGoogle Scholar
  14. Boldt R, Scandalios JG (1997) Influence of UV-light on the expression of the Cat2 and Cat3 catalase genes in maize. Free Radical Bio Med 23:505–514. CrossRefGoogle Scholar
  15. Bolton H, Elliott LF (1989) Toxin production by a rhizobacterial Pseudomonas sp. that inhibits wheat root growth. Plant Soil 114:269–278CrossRefGoogle Scholar
  16. Camejo D, Guzman-Cedeno A, Moreno A (2016) Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol Biochem 103:10–23. CrossRefPubMedGoogle Scholar
  17. Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS One 8:e56457. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chandlee JM, Tsaftaris AS, Scandalios JG (1983) Purification and partial characterization of three genetically defined catalases of maize. Plant Sci Lett 29:117–131. CrossRefGoogle Scholar
  19. Cheng Z, Woody OZ, McConkey BJ, Glick BR (2012) Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl Soil Ecol 61:255–263. CrossRefGoogle Scholar
  20. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. CrossRefGoogle Scholar
  21. Cvetkovska M, Vanlerberghe GC (2012) Coordination of a mitochondrial superoxide burst during the hypersensitive response to bacterial pathogen in Nicotiana tabacum. Plant Cell Environ 35:1121–1136. CrossRefPubMedGoogle Scholar
  22. Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795. CrossRefPubMedGoogle Scholar
  23. Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228. CrossRefGoogle Scholar
  24. Dunand C, Crèvecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341. CrossRefPubMedGoogle Scholar
  25. Eisenhauer N, Schulz W, Scheu S, Jousset A (2013) Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol 27:282–288. CrossRefGoogle Scholar
  26. Fones H, Preston GM (2012) Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiol Lett 327:1–8. CrossRefPubMedGoogle Scholar
  27. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100. CrossRefPubMedGoogle Scholar
  28. Frugoli JA, McPeek MA, Thomas TL, McClung CR (1998) Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics 149:355–365PubMedPubMedCentralGoogle Scholar
  29. Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer JM, Dessaux Y, Lemanceau P (2012) Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. Microb Ecol 64:725–737. CrossRefPubMedGoogle Scholar
  30. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. CrossRefPubMedGoogle Scholar
  31. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68. CrossRefPubMedGoogle Scholar
  32. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377. CrossRefPubMedGoogle Scholar
  33. Hassett DJ, Alsabbagh E, Parvatiyar K, Howell ML, Wilmott RW, Ochsner UA (2000) A protease-resistant catalase, Kat a, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J Bacteriol 182:4557–4563. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hishinuma S, Yuki M, Fujimura M, Fukumori F (2006) OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida. Environ Microbiol 8:2115–2124. CrossRefPubMedGoogle Scholar
  35. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric 347Google Scholar
  36. Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982. CrossRefPubMedGoogle Scholar
  37. Hudek L, Rai LC, Freestone D, Michalczyk A, Gibson M, Song YF, Ackland ML (2009) Bioinformatic and expression analyses of genes mediating zinc homeostasis in Nostoc punctiforme. Appl Environ Microbiol 75:784–791. CrossRefPubMedGoogle Scholar
  38. Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML (2013a) Functional characterization of the twin ZIP/SLC39 metal transporters, NpunF3111 and NpunF2202 in Nostoc punctiforme. J Appl Microbiol 97:8649–8662. CrossRefGoogle Scholar
  39. Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML (2013b) Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme. FEMS Microbiol Ecol 86:149–171. CrossRefPubMedGoogle Scholar
  40. Hudek L, Brau L, Michalczyk AA, Neilan BA, Meeks JC, Ackland ML (2015) The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme. Appl Microbiol Biotechnol 99:10559–10574. CrossRefPubMedGoogle Scholar
  41. Hudek L, Torriero AAJ, Michalczyk AA, Neilan BA, Ackland ML, Brau L (2017) Peroxide reduction by a metal-dependent catalase in Nostoc punctiforme (cyanobacteria). Appl Microbiol Biotechnol 101:3781–3800. CrossRefPubMedGoogle Scholar
  42. Humphris SN, Bengough AG, Griffiths BS, Kilham K, Rodger S, Stubbs V, Valentine TA, Young IM (2005) Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiol Ecol 54:123–130. CrossRefPubMedGoogle Scholar
  43. Jamet A, Mandon K, Puppo A, Hérouart D (2007) H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis. J Bacteriol 189:8741–8745. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol 132:1177–1185. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151. CrossRefGoogle Scholar
  46. Magbanua ZV, De Moraes CM, Brooks TD, Williams WP, Luthe DS (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant Microbe In 20:697–706. CrossRefGoogle Scholar
  47. Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O'Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci U S A 102:17454–17459. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615. CrossRefPubMedGoogle Scholar
  49. Matilla MA, Espinosa-Urgel M, Rodríguez-Herva JJ, Ramos JL, Ramos-González MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220. CrossRefPubMedGoogle Scholar
  51. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. CrossRefPubMedGoogle Scholar
  52. Nikel PI, Chavarría M, Martínez-García E, Taylor AC, de Lorenzo V (2013) Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microb Cell Factories 12:50. CrossRefGoogle Scholar
  53. Panmanee W, Hassett DJ (2009) Differential roles of OxyR-controlled antioxidant enzymes alkyl hydroperoxide reductase (AhpCF) and catalase (KatB) in the protection of Pseudomonas aeruginosa against hydrogen peroxide in biofilm vs. planktonic culture. FEMS Microbiol Lett 295:238–244. CrossRefPubMedGoogle Scholar
  54. Pezzoni M, Pizarro RA, Costa CS (2014) Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms. J Photochem Photobiol B 131:53–64. CrossRefPubMedGoogle Scholar
  55. Premachandra D, Hudek L, Brau L (2016) Bacterial modes of action for enhancing of plant growth. J Biotechnol Biomater 6:1–8. CrossRefGoogle Scholar
  56. Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R (2013) Hydrogen peroxide and nitric oxide: key regulators of the legume-rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 18:2202–2219. CrossRefPubMedGoogle Scholar
  57. Ramu SK, Peng HM, Cook DR (2002) Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Mol Plant Microbe In 15:522–528. CrossRefGoogle Scholar
  58. Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069. CrossRefPubMedGoogle Scholar
  59. Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. CrossRefGoogle Scholar
  60. Salinas E, Torriero AA, Sanz MI, Battaglini F, Raba J (2005) Continuous-flow system for horseradish peroxidase enzyme assay comprising a packed-column, an amperometric detector and a rotating bioreactor. Talanta 66:92–102. CrossRefPubMedGoogle Scholar
  61. Sanchez S, Pumera M, Cabruja E, Fabregas E (2007a) Carbon nanotube/polysulfone composite screen-printed electrochemical enzyme biosensors. Analyst 132:142–147. CrossRefPubMedGoogle Scholar
  62. Sanchez S, Pumera M, Fabregas E (2007b) Carbon nanotube/polysulfone screen-printed electrochemical immunosensor. Biosens Bioelectron 23:332–340. CrossRefPubMedGoogle Scholar
  63. Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe In 14:86–89. CrossRefGoogle Scholar
  64. Scandalios JG (1997) Oxidative stress and defense mechanisms in plants: introduction. Free Radical Bio Med 23:471–472. CrossRefGoogle Scholar
  65. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust J Bot 2012:1–26. CrossRefGoogle Scholar
  66. Sigaud S, Becquet V, Frendo P, Puppo A, Herouart D (1999) Differential regulation of two divergent Sinorhizobium meliloti genes for HPII-like catalases during free-living growth and protective role of both catalases during symbiosis. J Bacteriol 181:2634–2639PubMedPubMedCentralGoogle Scholar
  67. Song Y, Hudek L, Freestone D, Puhui J, Michalczyk A, Senlin Z, Ackland M (2014) Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica rapa. Environ Chem 11:653–660. CrossRefGoogle Scholar
  68. Szopińska D (2014) Effects of hydrogen peroxide treatment on the germination, vigour and health of Zinnia elegans seeds. Folia Hort 26:19–29. CrossRefGoogle Scholar
  69. Thilakarathna MS, Raizada MN (2017) A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biol Biochem 105:177–196. CrossRefGoogle Scholar
  70. Tribelli PM, Nikel PI, Oppezzo OJ, López NI (2013) Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis. Microbiology 159:259–268. CrossRefPubMedGoogle Scholar
  71. Vandenabeele S, van der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, van Montagu M, Zabeau M, Inze D, van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci U S A 100:16113–16118. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:1–16. CrossRefGoogle Scholar
  73. Yan-Yan D, Peng-Cheng W, Jia C, Chun-Peng S (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50:1318–1326. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • L. Hudek
    • 1
    • 2
  • A. Enez
    • 1
    • 2
  • W. A. J. Webster
    • 1
    • 2
  • D. Premachandra
    • 1
    • 2
  • L. Bräu
    • 1
    • 2
    Email author
  1. 1.Centre for Regional and Rural Futures, School of Life and Environmental SciencesDeakin UniversityGeelongAustralia
  2. 2.Centre for Cellular and Molecular Biology, School of Life and Environmental SciencesDeakin UniversityGeelongAustralia

Personalised recommendations