Plant and Soil

, Volume 430, Issue 1–2, pp 381–394 | Cite as

Field evaluation of cultural cycles for improved cadmium and zinc phytoextraction with Noccaea caerulescens

  • Arnaud JacobsEmail author
  • Thomas Drouet
  • Nausicaa Noret
Regular Article


Background and aims

Adequate cultural cycles for phytoextraction with Noccaea caerulescens have never been investigated, whereas they directly influence biomass production. The aim of this study was to investigate the effects of the season of establishment, the seeding strategy (sowing vs transplantation) and the length of the growing season on biomass production and metal accumulation of N. caerulescens.


A field trial was conducted on an urban wasteland contaminated with trace metals. Two populations with contrasted natural life cycles, one Cd-accumulating metallicolous (Ganges, GAN) and one non-metallicolous from Luxemburg (LUX), were compared in 6 cultural cycles.


Direct sowing in the fall yielded satisfying metal uptake (260 g Cd ha−1 with GAN and 25 kg Zn ha−1 with LUX), though lower than those obtained with transplantation (320 g Cd ha−1 with GAN and 45 kg Zn ha−1 with LUX) due to less biomass production (1.6 vs 3.2 t ha−1). Extending the growing period from 6 to 12 months was mostly beneficial for biennial LUX plants (with 3 times higher Zn uptake), than for annual GAN plants (with 1.5 times higher Cd uptake).


The natural variation in life cycles – annual or biennial – of N. caerulescens should be taken into account when selecting cultivars for phytoextraction.


Growth cycles Hyperaccumulation Life cycles Phytoremediation Trace metals 



A.J. is a research fellow of the Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA, Belgium). The authors gratefully acknowledge the Contrat de Quartier Durable Bockstael for site access, and the Centre d’Ecologie Urbaine for project coordination and help in the field. We are also grateful to Alexandre Van Baekel and Kristel Wart for their technical help in laboratory analyses, field work and seed production.

Supplementary material

11104_2018_3734_MOESM1_ESM.xlsx (324 kb)
ESM 1 (XLSX 323 kb)


  1. Assunção AG, Schat H, Aarts MG (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360CrossRefGoogle Scholar
  2. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin in Biotech 8:279–284CrossRefGoogle Scholar
  3. Dechamps C, Lefebvre C, Noret N, Meerts P (2007) Reaction norms of life history traits in response to zinc in Thlaspi caerulescens from metalliferous and nonmetal liferous sites. New Phytol 173:191–198CrossRefPubMedGoogle Scholar
  4. Dechamps C, Noret N, Mozek R, Draye X, Meerts P (2008) Root allocation in metal-rich patch by Thlaspi caerulescens from normal and metalliferous soil - new insights into the rhizobox approach. Plant Soil 310:211–224CrossRefGoogle Scholar
  5. Dechamps C, Elvinger N, Meerts P, Lefèbvre C, Escarré J, Colling G, Noret N (2011) Life history traits of the pseudometallophyte Thlaspi caerulescens in natural populations from northern Europe. Plant Biol 13:125–135CrossRefPubMedGoogle Scholar
  6. Dubois S (2005) Etude d’un réseau de populations métallicoles et non-métallicoles de Thlaspi caerulescens (Brassicaceae). Structure génétique, démographie et pressions de sélection. PhD thesis, Université Montpellier II – Sciences et Techniques du Languedoc, Montpellier, FranceGoogle Scholar
  7. Escarré J, Lefèbvre C, Gruber W, Leblanc M, Lepart J, Rivière Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area : implications for phytoremediation. New Phytol 145:429–437CrossRefGoogle Scholar
  8. Escarré J, Lefebvre C, Frérot H, Mahieu S, Noret N (2013) Metal concentration and metal mass of metallicolous, non metallicolous and serpentine Noccaea caerulescens populations, cultivated in different growth media. Plant Soil 370:197–221CrossRefGoogle Scholar
  9. Gérard E, Echevarria G, Sterckeman T, Morel J-L (2000) Cadmium availability to three plant species varying in cadmium accumulation pattern. Journal of Environ Qual 29:1117–1123CrossRefGoogle Scholar
  10. Gonneau C, Genevois N, Frérot H, Sirguey C, Sterckeman T (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384:271–287CrossRefGoogle Scholar
  11. Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manag 19:144–149Google Scholar
  12. Hammer D, Keller C, McLaughlin MJ, Hamon RE (2006) Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants: results from an isotopic dilution study. Environ Pollut 143:407–415CrossRefPubMedGoogle Scholar
  13. Jacobs A, Drouet T, Sterckeman T, Noret N (2017) Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials. Environ Sci Pollut Res 24:8176–8188CrossRefGoogle Scholar
  14. Jacobs A, De Brabandere L, Drouet T, Sterckeman T, Noret N (2018) Phytoextraction of Cd and Zn with Noccaea caerulescens for urban soil remediation: influence of nitrogen fertilization and planting density. Ecol Eng 116:178–187Google Scholar
  15. Jiménez-Ambriz G, Petit C, Bourrié I, Dubois S, Olivieri I, Ronce O (2007) Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity. New Phytol 173:199–215CrossRefPubMedGoogle Scholar
  16. Li J-T, Baker AJM, Ye Z-H, Wang H-B, Shu W-S (2012) Phytoextraction of Cd-contaminated soils: current status and future challenges. Crit Rev Environ Sci Technol 42:2113–2152Google Scholar
  17. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20CrossRefGoogle Scholar
  18. Lovy L (2012) Hyperaccumulation du cadmium par Noccaea caerulescens : cinétique, répartition et prédiction. PhD thesis, Université de Lorraine, FranceGoogle Scholar
  19. Lovy L, Latt D, Sterckeman T (2013) Cadmium uptake and partitioning in the hyperaccumulator Noccaea caerulescens exposed to constant Cd concentrations throughout complete growth cycles. Plant Soil 362:345–354Google Scholar
  20. Martínez-Alcalá I, Bernal MP, de la Fuente C, Gondar D, Clemente R (2016) Changes in the heavy metal solubility of two contaminated soils after heavy metals phytoextraction with Noccaea caerulescens. Ecol Eng 89:56–63CrossRefGoogle Scholar
  21. Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372CrossRefPubMedGoogle Scholar
  22. McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125Google Scholar
  23. Molitor M, Dechamps C, Gruber W, Meerts P (2005) Thlaspi caerulescens on nonmetalliferous soil in Luxembourg : ecological niche and genetic variation in mineral element composition. New Phytol 165:503–512CrossRefPubMedGoogle Scholar
  24. Perronnet K, Schwartz C, Gérard E, Morel J-L (2000) Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil. Plant Soil 227:257–263CrossRefGoogle Scholar
  25. Perronnet K, Schwartz C, Morel J-L (2003) Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant Soil 249:19–25CrossRefGoogle Scholar
  26. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria Google Scholar
  27. Reeves RD, Schwartz C, Morel J-L, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int. J. Phytoremediation 3:145–172CrossRefGoogle Scholar
  28. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56CrossRefGoogle Scholar
  29. Schwartz C, Guimont S, Saison C, Perronnet K, Morel J-L (2001) Phytoextraction of Cd and Zn by the hyperaccumulator plant Thlaspi caerulescens as affected by plant size and origin. S Afr J Sci 97:561–564Google Scholar
  30. Schwartz C, Sirguey C, Peronny S, Reeves RD, Bourgaud F, Morel J-L (2006) Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction. Int J Phytoremediation 8:339–357CrossRefPubMedGoogle Scholar
  31. Sirguey C, Schwartz C, Morel J-L (2006) Response of Thlaspi caerulescens to nitrogen. Phosphorus and Sulfur Fertilisation Int J Phytoremediation 8:149–161Google Scholar
  32. Sterckeman T, Cazes Y, Gonneau C, Sirguey C (2017) Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil 418:523–540CrossRefGoogle Scholar
  33. Tang YT, Deng THB, Wu QH, Wang SZ, Qiu RL, Wei ZB, Guo XF, Wu QT, Lei M, Chen TB, Echevarria G, Sterckeman T, Simonnot M-O, Morel J-L (2012) Designing cropping systems for metal-contaminated sites: a review. Pedosphere 22:470–488CrossRefGoogle Scholar
  34. Tlustoš P, Břendová K, Száková J, Najmanová J, Koubová K (2016) The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Int J Phytoremediation 18:110–115Google Scholar
  35. Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’Écologie Végétale et Biogéochimie, CP 244, Faculté des SciencesUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations