Advertisement

Plant and Soil

, Volume 430, Issue 1–2, pp 185–204 | Cite as

Halophytic plant community patterns in Mediterranean saltmarshes: shedding light on the connection between abiotic factors and the distribution of halophytes

  • Joaquín Moreno
  • Alejandro Terrones
  • Ana Juan
  • María Ángeles Alonso
Regular Article
  • 166 Downloads

Abstract

Aims

Establishing a vegetation-soil model in Mediterranean saltmarshes based on the relationships between the plant communities and the abiotic factors, considering temporary variation.

Methods

Relationships between perennial plant species abundances and plant communities were analysed by DCAs. A CCA was performed to study the relationships between floristic composition and edaphic variables. Sixteen soil variables and Pearson correlations between them were considered. Marginal and conditional effects were supported by mixed ANOVA. Statistical analyses were performed to check temporary variation.

Results

DCAs results showed eight vegetation types. CCA showed E.C. as the main gradient, with the succulent halophyte communities growing in high E.C. soils. SAR and percentage of sand were considered as secondary gradients. Finally, the highest values of the edaphic variables were observed, in general, during the cold period.

Conclusions

The main gradient of salinity, together with sodicity and texture gradients, would markedly influence the plant distribution in Mediterranean saltmarshes. Two principal plant zones were observed: succulent zone vs. non-succulent zone, with a specific edaphic distribution for each plant community and for the proposed Limonium morphotypes treatment. A plant-soil model based on these three gradients is here proposed. Our results would complement the previous knowledge about plant-soil relationships in Mediterranean saltmarshes.

Keywords

Edaphic factors Plant community structure Environmental gradients Quantitative ecology Vegetation distribution 

Abbreviations

ANOVA

Analysis of variance

CCA

Canonical Correspondence Analysis

DCA

Detrended Correspondence Analysis

E.C.

Electrical conductivity

PAWC

Plant Available Water Capacity

SAR

Sodium Adsorption Ratio

Notes

Acknowledgements

The authors wish to thank Prof. Francesco de Bello and Prof. Petr Šmilauer for the assistance and suggestions in the statistical analyses; Antonio Sánchez and Margarita Juárez for the assistance in the edaphic analyses; Alicia Vicente, José Luis Villar, Jonás Agulló, Manuel Ortiz and Laura Mora for the assistance in fieldwork; and the University of South Bohemia (Czech Republic) for providing CANOCO v.5 (Microcomputer Power, Ithaca, NY, US) to perform the statistical analyses. We greatly appreciate the comments of two anonymous reviewers. This research was supported by project OAPN 354/2011 (M° de Agricultura, Alimentación y Medio Ambiente, Spanish Government) and FPU grant AP-2012-1954 (M° de Educación, Spanish Government). This research has been supported by the Languages Service (University of Alicante) for the elaboration of Ph.D. Theses in Valencian and foreign languages. This research is part of the Ph.D. Thesis of Joaquín Moreno.

Supplementary material

11104_2018_3671_MOESM1_ESM.xlsx (13 kb)
ESM 1 (XLSX 13.2 kb)
11104_2018_3671_MOESM2_ESM.xlsx (14 kb)
ESM 2 (XLSX 13.5 kb)
11104_2018_3671_MOESM3_ESM.xlsx (28 kb)
ESM 3 (XLSX 28.3 kb)
11104_2018_3671_MOESM4_ESM.xlsx (62 kb)
ESM 4 (XLSX 62 kb)
11104_2018_3671_MOESM5_ESM.xlsx (16 kb)
ESM 5 (XLSX 16.3 kb)
11104_2018_3671_MOESM6_ESM.xlsx (14 kb)
ESM 6 (XLSX 13.7 kb)
11104_2018_3671_MOESM7_ESM.xlsx (13 kb)
ESM 7 (XLSX 12.7 kb)
11104_2018_3671_MOESM8_ESM.xlsx (17 kb)
ESM 8 (XLSX 16.7 kb)
11104_2018_3671_MOESM9_ESM.xlsx (15 kb)
ESM 9 (XLSX 15.1 kb)
11104_2018_3671_MOESM10_ESM.pdf (57 kb)
Figure A1 Canonical Correspondence Analysis (CCA) with E.C. as covariable of forty-three samples of halophytic communities from studied Mediterranean saltmarshes showing correlations between samples and edaphic variables. Arrows indicate the edaphic variables and their directions and length show their relationships to the ordination axes. Edaphic variables abbreviations: E.C., electrical conductivity; Moisture, soil moisture; PAWC, plant available water capacity; SAR, sodium adsorption ratio. Plant community abbreviations: A. macrostachyum, Arthrocaulon macrostachyum; H. strobilaceum, Halocnemum strobilaceum; L. spartum, Lygeum spartum; S. fruticosa, Salicornia fruticosa. (PDF 56 kb)

References

  1. Abdul-Halim MS, Ismail AAM (1990) Vegetation composition of a maritime salt marsh in Qatar in relation to edaphic features. J Veg Sci 1:85–88.  https://doi.org/10.2307/3236057 CrossRefGoogle Scholar
  2. Adams DA (1963) Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44(3):445–456.  https://doi.org/10.2307/1932523 CrossRefGoogle Scholar
  3. Alcaraz F, Ortiz R, Hernández S (1987) Contribución al conocimiento de las relaciones suelo-agua-vegetación en un sector de las salinas de Santa Pola (Alicante). Anales de Edafología y Agrobiología 46:273–283Google Scholar
  4. Alonso MA (2000) Estudio geobotánico de los saladares del sureste peninsular (Albacete-Alicante-Almería y Murcia). Ph.D. thesis. University of Alicante, SpainGoogle Scholar
  5. Álvarez-Rogel J (1997) Relaciones suelo-planta en saladares del sureste de España. Ph.D. thesis. University of Murcia, SpainGoogle Scholar
  6. Álvarez-Rogel J, Alcaraz F, Ortiz R (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20(2):357–372. https://doi.org/10.1672/0277-5212(2000)020[0357:SSAMGA]2.0.CO;2Google Scholar
  7. Álvarez-Rogel J, Ortiz R, Alcaraz F (2001) Edaphic characterization and soil ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma 99:81–98.  https://doi.org/10.1016/S0016-7061(00)00067-7 CrossRefGoogle Scholar
  8. Álvarez-Rogel J, Jiménez-Cárceles FJ, Roca MJ, Ortiz R (2007) Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuar Coast Shelf Sci 73:510–526.  https://doi.org/10.1016/j.ecss.2007.02.018 CrossRefGoogle Scholar
  9. Baumberger T, Affre L, Croze T, Mesléard F (2012) Habitat requirements and population structure of the rare endangered Limonium girardianum in Mediterranean salt marshes. Flora 207:283–293.  https://doi.org/10.1016/j.flora.2011.11.008 CrossRefGoogle Scholar
  10. Bernstein L (1975) Effects of salinity and sodicity on plant growth. Annu Rev Phytopathol 13:295–312CrossRefGoogle Scholar
  11. Bertness MD, Ellison AM (1987) Determinants of pattern in a New England salt marsh plant community. Ecol Monogr 52(2):129–147.  https://doi.org/10.2307/1942621 CrossRefGoogle Scholar
  12. Bertness MD, Wikler K, Chatkupt T (1992) Flood tolerance and the distribution of Iva frutescens across New England salt marshes. Oecologia 91:171–178.  https://doi.org/10.1007/BF00317780 CrossRefPubMedGoogle Scholar
  13. Blanca G, Cabezudo B, Cueto M, Salazar C, Morales-Torres C (eds) (2011) Flora Vascular de Andalucía Oriental. 2ª edición corregida y aumentada. Universidades de Almería, Granada, Jaén y Málaga, Granada.Google Scholar
  14. Braun-Blanquet J (1946) Über den Deckungswert der Arten in den Pfl anzengesellschaften der Ordnung Vaccinio-Piceetalia. Jahresber Naturforsch Ges Graubündens 130:115–119Google Scholar
  15. Braun-Blanquet J (1979) Fitosociología. Bases para el estudio de las comunidades vegetales. Blume, MadridGoogle Scholar
  16. Burt R (2004) Soil survey laboratory methods manual. United States Department of Agriculture (USDA) - Natural Resources Conservation Service (NRCS), LincolnGoogle Scholar
  17. Cantero JJ, Cisneros JM, Zobel M, Cantero A (1998) Environmental relationships of vegetation patterns in salt marshes of Central Argentina. Folia Geobot 33:133–145.  https://doi.org/10.1007/BF02913341 CrossRefGoogle Scholar
  18. Castroviejo S (coord gen) (1986–2015) Flora iberica 1–16(I), 17–18, 20–21. Real Jardín Botánico, CSIC, MadridGoogle Scholar
  19. Chapman VJ (1939) Studies in salt-marsh ecology. Sections IV and V. J Ecol 27:160–201.  https://doi.org/10.2307/2256306 CrossRefGoogle Scholar
  20. Chapman VJ (1974) Salt marshes and salt desert of the world. 2nd edition. Lehre, StuttgartGoogle Scholar
  21. Chigani KH, Khajeddin SJ, Karimzadeh HR (2010) Soil-vegetation relationships of three arid land plant species and their use in rehabilitating degraded sites. Land Degrad Dev 23(1):92–101.  https://doi.org/10.1002/ldr.1057 CrossRefGoogle Scholar
  22. Costa M, Boira H (1981) La vegetación valenciana: los saladares. Anales Jard Bot Madrid 38(l):233–244Google Scholar
  23. Davis MM, Sprecher SW, Wakeley JS, Best GR (1996) Environmental gradients and identification of wetlands in north–Central Florida. Wetlands 16:512–523.  https://doi.org/10.1007/BF03161341 CrossRefGoogle Scholar
  24. Deckers JA, Nachtergaele FO, Spaargaren OC (eds) (1998) World reference base for soil resources. Introduction. ISSS/ISRIC/FAO, Acco, Leuven/AmersfoortGoogle Scholar
  25. El-Amier YA (2016) Vegetation structure and soil characteristics of five common geophytes in desert of Egypt. Egyptian J Basic Appl Sci 3(2):172–186.  https://doi.org/10.1016/j.ejbas.2016.03.001 CrossRefGoogle Scholar
  26. El-Ghani MA, Soliman A, El-Fattah RA (2014) Spatial distribution and soil characteristics of the vegetation associated with common succulent plants in Egypt. Turk J Bot 38(3):550–565CrossRefGoogle Scholar
  27. Engels JG, Jensen K (2010) Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient. Oikos 119(4):679–685.  https://doi.org/10.1111/j.1600-0706.2009.17940.x CrossRefGoogle Scholar
  28. Engels JG, Rink F, Jensen K (2011) Stress tolerance and biotic interactions determine plant zonation patterns in estuarine marshes during seedling emergence and early establishment. J Ecol 99(1):277–287.  https://doi.org/10.1111/j.1365-2745.2010.01745.x CrossRefGoogle Scholar
  29. Erben M (1993) Limonium Mill. In: Castroviejo S, Aedo C, Cirujano S, Laínz M, Montserrat P, Morales R, Muñoz Garmendia F, Navarro C, Paiva J, Soriano C (eds) Flora iberica 3. Real Jardín Botánico, CSIC, Madrid, pp 2–142Google Scholar
  30. FAO-UNESCO-ISRIC (1988) Soil map of the world, revised legend. World soil resources n°. FAO, Rome, p 60Google Scholar
  31. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963.  https://doi.org/10.1111/j.1469-8137.2008.02531.x CrossRefPubMedGoogle Scholar
  32. García LV, Marañón T, Moreno A, Clemente L (1993) Above-ground biomass and species richness in a Mediterranean salt marsh. J Veg Sci 4:417–424.  https://doi.org/10.2307/3235601 CrossRefGoogle Scholar
  33. González-Alcaraz MN, Jiménez-Cárceles FJ, Álvarez Y, Álvarez-Rogel J (2014) Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: a model of soil–plant relationships for contributing to the management. Catena 115:150–158.  https://doi.org/10.1016/j.catena.2013.11.011 CrossRefGoogle Scholar
  34. Gray AJ (1994) Saltmarsh plant ecology: zonation and succession revisited. In: Allen JRL, Pye K (eds) Saltmarshes: Morphodynamics, conservation and engineering significance. Cambridge University Press, New York, pp 63–79Google Scholar
  35. Hackney CT, Brady S, Stemmy L, Boris M, Dennis C, Hancock T, O’Bryon M, Tylton C, Barbeew E (1996) Does intertidal vegetation indicate specific soil and hydrological conditions? Wetlands 16:89–94.  https://doi.org/10.1007/BF03160649 CrossRefGoogle Scholar
  36. Harris DC (2003) Quantitative chemical analysis, 6th edn. W.H. Freeman, New YorkGoogle Scholar
  37. Juárez M, Sánchez A, Jordá J, Sánchez J (2004) Diagnóstico del potencial nutritivo del suelo. Universidad de Alicante, AlicanteGoogle Scholar
  38. Kassas M, Zahran MA (1967) On the ecology of the Red Sea littoral salt marsh, Egypt. Ecol Monogr 37:297–315CrossRefGoogle Scholar
  39. Koull N, Chehma A (2016) Soil characteristics and plant distribution in saline wetlands of Oued Righ, northeastern Algeria. J Arid Land 8(6):948–959.  https://doi.org/10.1007/s40333-016-0060-5 CrossRefGoogle Scholar
  40. Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New YorkCrossRefGoogle Scholar
  41. Lendínez ML (2010) Estudio fitosociológico y fitocenótico de la vegetación halófila andaluza: Bases para su gestión y conservación. Ph.D. thesis. University of Jaén, SpainGoogle Scholar
  42. Lepš J, Šmilauer P (2014) Multivariate analysis of ecological data using CANOCO 5, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  43. Mateo G, Crespo MB (2009) Manual para la determinación de la flora valenciana, 4th edn. Librería Compás, AlicanteGoogle Scholar
  44. Montasir AH (1943) Soil structure in relation to plants at Mariut. Bull Inst d’Egypte 15:205–236Google Scholar
  45. Moreno J, Terrones A, Alonso MA, Juan A, Crespo MB (2016) Limonium tobarrense (Plumbaginaceae), a new species from the southeastern Iberian Peninsula. Phytotaxa 257(1):61–70.  https://doi.org/10.11646/phytotaxa.257.1.4 CrossRefGoogle Scholar
  46. Moreno J, Terrones A, Juan A, Alonso MA (2017) A quantitative plant-soil model of saltcedar woodlands: the influence of abiotic factors on the floristic composition of Tamarix communities. Catena in pressGoogle Scholar
  47. Moreno J, Terrones A, Alonso MA, Juan A, Crespo MB (2018) Taxonomic revision of the Limonium latebracteatum group (Plumbaginaceae), with the description of a new species. Phytotaxa 333(1):41–57.  https://doi.org/10.11646/phytotaxa.333.1.3 CrossRefGoogle Scholar
  48. Muñoz-Rodríguez AF, Sanjosé I, Márquez-García B, Infante-Izquierdo MD, Polo-Ávila A, Nieva FJJ, Castillo JM (2017) Germination syndromes in response to salinity of Chenopodiaceae halophytes along the intertidal gradient. Aquat Bot 139:48–56.  https://doi.org/10.1016/j.aquabot.2017.02.003 CrossRefGoogle Scholar
  49. Munsell® (1994) Soil colour charts, Revised edition. Macbeth Division of Kollmorgen Instruments Corporation, New WindsorGoogle Scholar
  50. Neiring WA, Warren RS (1980) Vegetation patterns and processes in New England salt marshes. Bioscience 30(5):301–307.  https://doi.org/10.2307/1307853 CrossRefGoogle Scholar
  51. Ortiz R, Álvarez-Rogel J, Alcaraz F (1995) Soil-vegetation relationships in two coastal salt marshes in southeastern Spain. Arid Soil Res Rehabil 9(4):481–493.  https://doi.org/10.1080/15324989509385914 CrossRefGoogle Scholar
  52. Peinado M, Alcaraz F, Aguirre JL, Delgadillo J, Álvarez J (1995) Similarity of zonation within Californian-Baja Californian and Mediterranean salt marshes. Southwest Nat 40(4):388–405Google Scholar
  53. Pennings SC, Bertness MD (1999) Using latitudinal variation to examine effects of climate on coastal salt marsh pattern and process. Curr Top Wetland Biogeochem 3:100–111Google Scholar
  54. Pennings SC, Callaway RM (1992) Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73(2):681–690.  https://doi.org/10.2307/1940774 CrossRefGoogle Scholar
  55. Pennings SC, Grant M, Bertness MD (2005) Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. J Ecol 93(1):159–167.  https://doi.org/10.1111/j.1365-2745.2004.00959.x CrossRefGoogle Scholar
  56. Pielou EC, Routledge RD (1976) Salt marsh vegetation: latitudinal gradients in the zonation patterns. Oecologia 24(4):311–321.  https://doi.org/10.1007/BF00381137 CrossRefPubMedGoogle Scholar
  57. Piernik A (2003) Inland halophilous vegetation as indicator of soil salinity. Basic Appl Ecol 4:525–536.  https://doi.org/10.1078/1439-1791-00154 CrossRefGoogle Scholar
  58. Piernik A (2012) Ecological patterns of inland salt marsh vegetation in Central Europe. Nicolas Copernicus University Press, ToruńGoogle Scholar
  59. Pignatti S (1952) Note fitosociologique su alcune associazioni alofile del litorale tunisino. Bol Soc Veneziana Stor Nat 6(1):77–94Google Scholar
  60. Piirainen M, Liebisch O, Kadereit G (2017) Phylogeny, biogeography, systematics and taxonomy of Salicornioideae (Amaranthaceae / Chenopodiaceae) – a cosmopolitan, highly specialized hygrohalophyte lineage dating back to the Oligocene. Taxon 66(1):109–132.  https://doi.org/10.12705/661.6 CrossRefGoogle Scholar
  61. Pujol JA, Calvo JF, Ramírez-Díaz L (2000) Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Ann Bot 85:279–286.  https://doi.org/10.1006/anbo.1999.1028 CrossRefGoogle Scholar
  62. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  63. Redondo S, Rubio-Casal AE, Castillo JM, Luque CJ, Álvarez AA, Luque T, Figueroa ME (2004) Influences of salinity and light on germination of three Sarcocornia taxa with contrasted habitats. Aquat Bot 78:255–264.  https://doi.org/10.1016/j.aquabot.2003.11.002 CrossRefGoogle Scholar
  64. Rivas-Martínez S (2007) Mapa de series, geoseries y geopermaseries de vegetación de España. Memoria del mapa de vegetación potencial de España, Parte I. Itinera Geobot 17:5–436Google Scholar
  65. Sari-Ali A, Benabadji N, Bouazza M (2012) Floristic composition of the halophilic and salt-resistant plant population in Hammam-Boughrara (Oran-Algeria). Open J Ecol 2:96–108.  https://doi.org/10.4236/oje.2012.22012 CrossRefGoogle Scholar
  66. Snow AA, Vince SW (1984) Plant zonation in an Alaskan salt marsh: II. An experimental study of the role of edaphic conditions. J Ecol 72:669–684.  https://doi.org/10.2307/2260075 CrossRefGoogle Scholar
  67. Tabachnick BG, Fidell LS (2007) Using multivariate statistics, 5th edn. Pearson, BostonGoogle Scholar
  68. Tadros TM (1953) A phytosociological study of halophilous communities from Mareotis (Egypt). Plant Ecol 4(2):102–124.  https://doi.org/10.1007/BF00822833 CrossRefGoogle Scholar
  69. Teege P, Kadereit JW, Kadereit G (2011) Tetraploid European Salicornia species are best interpreted as ecotypes of multiple origin. Flora 206:910–920.  https://doi.org/10.1016/j.flora.2011.05.009 CrossRefGoogle Scholar
  70. ter Braak, C.J., Šmilauer, F.P. (1999) CANOCO for Windows v. 4.02. Centre for Biometry Wageningen CPRO-DLO, Wageningen, The NetherlandsGoogle Scholar
  71. Vicente MJ, Conesa E, Álvarez-Rogel J, Franco JA, Martínez-Sánchez JJ (2007) Effects of various salts on the germination of three perennial salt marsh species. Aquat Bot 87(2):167–170.  https://doi.org/10.1016/j.aquabot.2007.04.004 CrossRefGoogle Scholar
  72. Waisel Y (1972) Biology of halophytes. Academic Press, New YorkGoogle Scholar
  73. Wolff WJ (1968) The halophilous vegetation of the lagoons of Mesolonghi, Greece. Vegetatio 16(1–4):95–134.  https://doi.org/10.1007/BF00261359 CrossRefGoogle Scholar
  74. Zedler JB, Callaway JC, Desmond JS, Vivian-Smith G, Williams GD, Sullivan G, Brewster AE, Bradshaw BK (1999) Californian salt marsh vegetation: an improved model of spatial pattern. Ecosystems 2:19–35.  https://doi.org/10.1007/s100219900055 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joaquín Moreno
    • 1
  • Alejandro Terrones
    • 1
  • Ana Juan
    • 1
  • María Ángeles Alonso
    • 1
  1. 1.Departamento de Ciencias Ambientales y Recursos Naturales/Instituto de la Biodiversidad CIBIOUniversidad de AlicanteAlicanteSpain

Personalised recommendations