Plant and Soil

, Volume 425, Issue 1–2, pp 43–55 | Cite as

Use of a gnotobiotic plant assay for assessing root colonization and mineral phosphate solubilization by Paraburkholderia bryophila Ha185 in association with perennial ryegrass (Lolium perenne L.)

  • Pei-Chun Lisa Hsu
  • Maureen O’Callaghan
  • Leo Condron
  • Mark R. H. Hurst
Methods Paper
  • 91 Downloads

Abstract

Aims

The mechanisms by which rhizosphere bacteria increase the availability of mineral P precipitates for plant use are understudied. However, Paraburkholderia bryophila Ha185 is known to solubilize inorganic phosphate in vitro via a novel process. Therefore, this study aimed to demonstrate P solubilization by Ha185 in association with roots of perennial ryegrass (Lolium perenne L.).

Methods

We developed a gnotobiotic plant assay to assess P solubilization by Ha185 on ryegrass roots under various nutrient conditions. A green fluorescent protein (GFP)-tagged derivative of Ha185 was used in conjunction with fluorescent microscopy and confocal microscopy to visualize colonization of ryegrass roots.

Results

Ha185 solubilized mineral P (hydroxyapatite) in association with ryegrass roots and increased ryegrass growth by 20% under P-limited conditions. The GFP-tagged Ha185 strain colonized the rhizoplane and penetrated the primary root of ryegrass, possibly through “crack entry” at the point of lateral root emergence, but also by entering the epidermal cells via root hairs.

Conclusions

Ha185 supported ryegrass growth under P-limited conditions, indicating this strain may improve availability of soil P for uptake by ryegrass. Tools developed in this study have broad application in the study of rhizobacteria-plant interactions.

Keywords

Paraburkholderia Phosphate solubilization Rhizosphere colonization Gnotobiotic plant assay Ryegrass 

Abbreviations

EP

Epidermal cells

GFP

Green fluorescent protein

HA

Hydroxyapatite

mz

Maturation zone

PSB

Phosphate-solubilizing bacteria

rd

Rhizodermis cells

re

Root emergence

rh

Root hairs

rs

Root stele

Notes

Acknowledgements

We thank Manfred Ingerfeld (University of Canterbury, New Zealand) for assistance with confocal microscopy, Aurelie Laugraud (AgResearch, New Zealand) for undertaking 16S rRNA gene analysis, and Pauline Hunt (AgResearch, New Zealand) for assistance with figures. We also thank Tamsin Sheen, PhD, for reviewing and editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11104_2018_3633_MOESM1_ESM.docx (262 kb)
Supplemental Figure 1 (DOCX 261 kb)
11104_2018_3633_MOESM2_ESM.avi (19.2 mb)
Supplemental Video S1 (AVI 19656 kb)

References

  1. Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971.  https://doi.org/10.3389/fmicb.2017.00971 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32CrossRefPubMedGoogle Scholar
  3. Beukes CW, Palmer M, Manyaka P, Chan WY, Avontuur JR, Van Zyl E et al (2017) Genome data provides high support for generic boundaries in Burkholderia sensu lato. Front Microbiol 8:1154CrossRefPubMedPubMedCentralGoogle Scholar
  4. Castanheira N, Dourado AC, Kruz S, Alves P, Delgado-Rodríguez A, Pais I, Semedo J, Scotti-Campos P, Sánchez C, Borges N, Carvalho G, Barreto Crespo MT, Fareleira P (2016) Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils. J Appl Microbiol 20:724–739CrossRefGoogle Scholar
  5. Chen YP, Rekha PD, Arun AB, Shen FT, Lai W-A, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41CrossRefGoogle Scholar
  6. Christoulaki M, Gouma S, Manios T, Tzortzakis N (2014) Deployment of sawdust as substrate medium in hydroponically grown lettuce. J Plant Nutr 37:1304–1315CrossRefGoogle Scholar
  7. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693CrossRefPubMedPubMedCentralGoogle Scholar
  8. Condron LM, Di HJ, Goh KM, Campbell AS, Harrison R (1995) Agronomic effectiveness of partially acidulated phosphate rock fertilisers in selected New Zealand soils. Aust J Exp Agr 35:387–393CrossRefGoogle Scholar
  9. Crone M, McComb J, O’Brien PA, Hardy GESJ (2013) Assessment of Australian native annual/herbaceous perennial plant species as asymptomatic or symptomatic hosts of Phytophthora cinnamomi under controlled conditions. Forest Path 43:245–251CrossRefGoogle Scholar
  10. Da K, Nowak J, Flinn B (2012) Potato cytosine methylation and gene expression changes induced by a beneficial bacterial endophyte, Burkholderia phytofirmans strain PsJN. Plant Physiol Biochem 50:24–34CrossRefPubMedGoogle Scholar
  11. Della Monica IF, Saparrat MCN, Godeas AM, Scervino JM (2015) The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecol 17:10–17CrossRefGoogle Scholar
  12. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucl Acids Res 16:6127–6145Google Scholar
  13. Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171CrossRefGoogle Scholar
  14. Fiasconaro ML, Gogorcena Y, Muñoz F, Andueza D, Sánchez-Díaz M, Antolín MC (2012) Effects of nitrogen source and water availability on stem carbohydrates and cellulosic bioethanol traits of alfalfa plants. Plant Sci 191:16–23CrossRefPubMedGoogle Scholar
  15. Gasser I, Cardinale M, Müller H, Heller S, Eberl L, Lindenkamp N, Kaddor C, Steinbüchel A, Gabriele B (2011) Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil 347:125–136CrossRefGoogle Scholar
  16. Giehl RF, von Wirén N (2014) Root nutrient foraging. Plant Physiol 166:509–517CrossRefPubMedPubMedCentralGoogle Scholar
  17. Giles CD, Hsu P-C, Richardson AE, Hurst MRH, Hill JE (2015) The role of gluconate production by Pseudomonas spp. in the mineralization and bioavailability of calcium-phytate to Nicotiana tabacum. Can J Microbiol 61:885–897CrossRefPubMedGoogle Scholar
  18. Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37CrossRefPubMedGoogle Scholar
  19. Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gyaneshwar P, James E, Mathan N, Reddy P, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bact 183:2634–2645CrossRefPubMedPubMedCentralGoogle Scholar
  21. Holman J, Bugbee B, Chard J (2005) A comparison of coconut coir and sphagnum peat as soil-less media components for plant growth Hydroponics/Soilless Media. Paper 1. https://digitalcommons.usu.edu/cpl_hydroponics/1
  22. Hsu PC (2014) Determination of genes involved in bacterial phosphate solubilisation. Doctoral dissertation, Lincoln UniversityGoogle Scholar
  23. Hsu PC, Condron L, O’Callaghan M, Hurst MRH (2015) HemX is required for production of 2-ketogluconate, the predominant organic anion required for inorganic phosphate solubilization by Burkholderia sp. Ha185. Environ Microbiol Rep 7:918–928CrossRefPubMedGoogle Scholar
  24. Kim KS, Ko KS, Chang MW, Hahn TW, Hong SK, Kook YH (2003) Use of rpoB sequences for phylogenetic study of Mycoplasma species. FEMS Microbiol Lett 226:299–305CrossRefPubMedGoogle Scholar
  25. Kim S, Lowman S, Hou G, Nowak J, Flinn B, Mei C (2012) Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnol Biofuels 5:37CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176CrossRefPubMedGoogle Scholar
  27. Lee JW, Lee BS, Kang JG, Bae JH, Ku YG, Gorinstein S, Lee JH (2014) Effect of root zone aeration on the growth and bioactivity of cucumber plants cultured in perlite substrate. Biologia 69:610–617CrossRefGoogle Scholar
  28. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25CrossRefPubMedGoogle Scholar
  29. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556CrossRefGoogle Scholar
  30. Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753CrossRefPubMedGoogle Scholar
  31. Luvizotto DM, Marcon J, Andreote FD, Dini-Andreote F, Neves AAC, WL A’j, Pizzirani-Kleiner AA (2010) Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World J Microbiol Biotechnol 26:1829–1836CrossRefGoogle Scholar
  32. Mander C, Wakelin S, Young S, Condron L. O’Callaghan M (2012) Incidence and diversity of phosphate - solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biol Biochem 44: 93–101CrossRefGoogle Scholar
  33. Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120CrossRefPubMedPubMedCentralGoogle Scholar
  34. Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VCS, Cruz LM, Chubatsu LS, Pedrosa FO, Souza EM (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356:175–196CrossRefGoogle Scholar
  35. Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl. Nat Sci 7:540–556Google Scholar
  36. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.00745
  37. Paungfoo-Lonhienne C, Lonhienne T, Yeoh YK, Webb RI, Lakshmanan P, Chan CX, Lim P-E, Ragan MA, Schmidt S, Hugenholtz P (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 7:142–154CrossRefPubMedGoogle Scholar
  38. Poupin MJ, Timmermann T, Vega A, Zuñiga A, González B (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8:e69435.  https://doi.org/10.1371/journal.pone.0069435 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62(2):435–444CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rennie DC, Manolii VP, Plishka M, Strelkov SE (2013) Histological analysis of spindle and spheroid root galls caused by Plasmodiophora brassicae. Eur J Plant Path 135:771–781CrossRefGoogle Scholar
  41. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339CrossRefPubMedGoogle Scholar
  42. Rogers JS, Swofford DL (1998) A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 47:77–89CrossRefPubMedGoogle Scholar
  43. Sambrook J, Russell DW (2001) Molecular cloning. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  44. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192CrossRefPubMedGoogle Scholar
  45. Shah SRU, Agback P, Lundquist P-O (2015) Root morphology and cluster root formation by seabuckthorn (Hippophaë rhamnoides L.) in response to nitrogen, phosphorus and iron deficiency. Plant Soil 397:75–91CrossRefGoogle Scholar
  46. Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607CrossRefPubMedGoogle Scholar
  47. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266CrossRefPubMedGoogle Scholar
  48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739Google Scholar
  49. Teixeira J, de Sousa A, Azenha M, Moreira JT, Fidalgo F, Silva AF, Faria JL, Silva AM (2011) Solanum nigrum L. weed plants as a remediation tool for metalaxyl-polluted effluents and soils. Chemosphere 85:744–750CrossRefPubMedGoogle Scholar
  50. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  51. Vandamme P, Opelt K, Knöchel N, Berg C, Schönmann S, De Brandt E, Eberl L, Falsen E, Berg G (2007) Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Int J Sys Evol Microbiol 57:2228–2235CrossRefGoogle Scholar
  52. Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Method. Mol Cell Biol 5:25–40Google Scholar
  53. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fert Soils 40:36–43CrossRefGoogle Scholar
  54. Wakelin SA, Young S, Gerard E, Mander C, O’Callaghan M (2017) Isolation of root associated Pseudomonas and Burkholderia spp. with biocontrol and plant-growth promoting traits. Biocont Sci Techn 27:139–143CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pei-Chun Lisa Hsu
    • 1
    • 2
  • Maureen O’Callaghan
    • 1
    • 2
  • Leo Condron
    • 2
  • Mark R. H. Hurst
    • 1
    • 2
  1. 1.Forage Science, AgResearch LimitedChristchurchNew Zealand
  2. 2.Bio-Protection Research CentreLincoln UniversityLincolnNew Zealand

Personalised recommendations