Advertisement

Above- and belowground biomass in a mixed cropping system with eight novel winter faba bean genotypes and winter wheat using FTIR spectroscopy for root species discrimination

  • Juliane StreitEmail author
  • Catharina Meinen
  • William Christopher Dougal Nelson
  • Daniel Johannes Siebrecht-Schöll
  • Rolf Rauber
Regular Article

Abstract

Background and aims

Legume-cereal mixtures are often characterized by higher biomass and grain yields compared to their sole crop equivalents due to complementary resource use. Little is known about the contribution of the root system to this overyielding potential and the related cultivar differences. This study investigated pure stands and mixtures of eight winter faba bean (Vicia faba L.) genotypes and one winter wheat cultivar (Triticum aestivum L., cv. Genius) with regard to their intra- and interspecific variation of shoot and root biomass and overyielding potential at full flowering of the bean.

Methods

Shoot biomass of 1 m2 was harvested and roots were sampled with a root auger down to 0.6 m soil depth in two sampling years. Fourier transform infrared (FTIR) spectroscopy was successfully used to determine species specific root biomasses in mixtures. Statistics were performed using linear mixed effects models.

Results

Mixtures of winter faba bean and winter wheat overyielded more below- than aboveground. Bean genotypes grown in mixtures with wheat differed significantly in their root biomass, root:shoot ratio and overyielding potential but not in their shoot biomass.

Conclusions

Genotype differences in root biomass and overyielding indicate breeding potential of winter faba bean cultivars for mixed cropping.

Keywords

Vicia faba Triticum aestivum Legume-cereal intercropping FTIR spectra Root shoot ratio Overyielding 

Abbreviations

Av

Average

FTIR

Fourier Transform Infrared

R:S

Root:Shoot

RY

Relative Yield

RYT

Relative Yield Total

Vf

Vicia faba

Ta

Triticum aestivum

Notes

Acknowledgements

This field experiment was part of the IMPAC3 project of the Centre of Biodiversity and sustainable Land Use at the University of Goettingen. We thank the Federal Ministry of Education and Research (BMBF, FKZ 031A351A,B,C) for funding. We gratefully acknowledge our project partners the Deutsche Saatveredelung (DSV) and the Norddeutsche Pflanzenzucht NPZ. We thank Christiane Münter, Thomas Seibold, Gabriele Kolle and the field workers for their help in the field and in the laboratory. Moreover we are grateful for the help of Dr. Bettina Tonn during the statistical analyses.

Supplementary material

11104_2018_3904_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 27 kb)

References

  1. Anil L, Park J, Phipps RH, Miller FA (1998) Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci 53(4):301–317CrossRefGoogle Scholar
  2. Banik P, Midya A, Sarkar BK, Ghose SS (2006) Wheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. Eur J Agron 24(4):325–332CrossRefGoogle Scholar
  3. Barraclough PB, Leigh RA (1984) The growth and activity of winter wheat roots in the field: the effect of sowing date and soil type on root growth of high-yielding crops. J Agr Sci 103(1):59–74.  https://doi.org/10.1017/S002185960004332X CrossRefGoogle Scholar
  4. Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PPM, Jones HG, Karley AJ, Li L, McKenzie BM, Pakeman RJ, Paterson E, Schöb C, Shen J, Squire G, Watson CA, Zhang C, Zhang F, Zhang J, White PJ (2015) Improving intercropping. A synthesis of research in agronomy, plant physiology and ecology. New Phytol 206(1):107–117.  https://doi.org/10.1111/nph.13132 CrossRefGoogle Scholar
  5. Bruker (2011) OPUS 7.0 Manual. Ettlingen: BRUKER OPTIK GmbHGoogle Scholar
  6. Bulson HAJ, Snaydon RW, Stopes CE (1997) Effects of plant density on intercropped wheat and field beans in an organic farming system. J Agr Sci 128(1):59–71CrossRefGoogle Scholar
  7. Bundessortenamt (2017) Beschreibende Sortenliste. Getreide, Mais, Öl- und Faserpflanzen, Leguminosen, Rüben, Zwischenfrüchte, HannoverGoogle Scholar
  8. Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci U S A 104(46):18123–18128.  https://doi.org/10.1073/pnas.0709069104 CrossRefGoogle Scholar
  9. Carr PM, Martin GB, Caton JS, Poland WW (1998) Forage and nitrogen yield of barley-pea and oat-pea intercrops. Agron J 90(1):79–84.  https://doi.org/10.2134/agronj1998.00021962009000010015x CrossRefGoogle Scholar
  10. Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4(442):1–16.  https://doi.org/10.3389/fpls.2013.00442. Google Scholar
  11. Connolly J, Wayne P, Bazzaz FA (2001) Interspecific competition in plants: how well do current methods answer fundamental questions? Am Nat 157(2):107–125.  https://doi.org/10.1086/318631 CrossRefGoogle Scholar
  12. Corre-Hellou G, Crozat Y (2005) Assessment of root system dynamics of species grown in mixtures under field conditions using herbicide injection and 15N natural abundance methods: a case study with pea, barley and mustard. Plant Soil 276(1–2):177–192.  https://doi.org/10.1007/s11104-005-4275-z CrossRefGoogle Scholar
  13. Crawford MC, Grace PR, Bellotti WBD, Oades JM (1997) Root production of a barrel medic (Medicago truncatula) pasture, a barley grass (Hordeum leporinum) pasture, and a faba bean (Vicia faba) crop in southern Australia. Aust J Agric Res 48(8):1139–1150CrossRefGoogle Scholar
  14. Davis JHC, Woolley JN (1993) Genotypic requirement for intercropping. Field Crop Res 34(3–4):407–430.  https://doi.org/10.1016/0378-4290(93)90124-6 CrossRefGoogle Scholar
  15. De Costa WAJM, Dennett MD, Ratnaweera U, Nyalemegbe K (1997) Effects of different water regimes on field-grown determinate and indeterminate faba bean (Vicia faba L.). I. Canopy growth and biomass production. Field Crop Res 49:83–93.  https://doi.org/10.1016/S0378-4290(96)01059-3 CrossRefGoogle Scholar
  16. de Wit CT (1960) On competition, No. 66.8. Pudoc, Wageningen.Google Scholar
  17. de Wit CT, van den Bergh JP (1965) Competition between herbage plants. J Agr Sci 13:212–221Google Scholar
  18. Den Herder G, van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15(11):600–607.  https://doi.org/10.1016/j.tplants.2010.08.009 CrossRefGoogle Scholar
  19. Diller M (2002) Untersuchungen zur NIRS-Methodenentwicklung für Kartoffeln aus dem Organischen Landbau unter Berücksichtigung von Jahrgangs- und Sorteneinflüssen, Diss. Univ. Bonn.Google Scholar
  20. Dokken KM, Davis LC (2007) Infrared imaging of sunflower and maize root anatomy. J Agr Food Chem 55(26):10517–10530.  https://doi.org/10.1021/jf072052e CrossRefGoogle Scholar
  21. DWD (2018) Climate Data Center (CDC) - German Meteorological Service (DWD), https://cdc.dwd.de/portal/201810240858/index.html. Accessed 27 Feb 2018.
  22. Ehlers W, Goss M (2016) Water dynamics in plant production, 2nd edn. CABI, WallingfordCrossRefGoogle Scholar
  23. Francis CA, Prager M, Tejada G (1982) Effects of relative planting dates in bean (Phaseolus vulgaris L.) and maize (Zea mays L.) intercropping patterns. Field Crop Res 5:45–54.  https://doi.org/10.1016/0378-4290(82)90005-3. CrossRefGoogle Scholar
  24. Gregory PJ, Eastham J (1996) Growth of shoots and roots, and interception of radiation by wheat and lupin crops on a shallow, duplex soil in response to time of sowing. Aust J Agric Res 47(3):427–447CrossRefGoogle Scholar
  25. Gregory PJ, Palta JA, Batts GR (1995) Root systems and root: mass ratio-carbon allocation under current and projected atmospheric conditions in arable crops. Plant Soil 187(2):221–228CrossRefGoogle Scholar
  26. Gronle A, Böhm H (2012) Does a pea-cereal intercropping under shallow ploughing compensate for the higher weed growth compared to deep ploughing in organic farming? Julius-Kühn-Archiv; 434 (1); 243–249. doi: https://doi.org/10.5073/jka.2012.434.030.
  27. Hauggaard-Nielsen H, Jensen ES (2001) Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crop Res 72(3):185–196.  https://doi.org/10.1016/S0378-4290(01)00176-9 CrossRefGoogle Scholar
  28. Hauggaard-Nielsen H, Jensen ES (2005) Facilitative root interactions in intercrops. Plant Soil 274(1–2):237–250.  https://doi.org/10.1007/s11104-004-1305-1 CrossRefGoogle Scholar
  29. Hauggaard-Nielsen H, Ambus P, Jensen ES (2001a) Interspecific competition, N use and interference with weeds in pea–barley intercropping. Field Crop Res 70(2):101–109.  https://doi.org/10.1016/S0378-4290(01)00126-5 CrossRefGoogle Scholar
  30. Hauggaard-Nielsen H, Ambus P, Jensen ES (2001b) Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops - a field study employing 32P technique. Plant Soil 236(1):63–74CrossRefGoogle Scholar
  31. Hauggaard-Nielsen H, Jørnsgaard B, Kinane J, Jensen ES (2008) Grain legume–cereal intercropping. The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew Agric Food Syst 23:3–12.  https://doi.org/10.1017/S1742170507002025 CrossRefGoogle Scholar
  32. Hauggaard-Nielsen H, Peoples MB, Jensen ES (2011) Faba bean in cropping systems. Grain legumes 56:32–33Google Scholar
  33. Hof C, Schmidtke K (2006) Erzeugung von Weizen hoher Backqualität durch Gemengeanbau mit Winterackerbohne und Wintererbse im ökologischen Landbau. Abschlussbericht des Projektes BLE03OE050, http://orgprints.org/15171/1/15171-03OE050-htw_dresden-schmidtke-2006-backqualitaet_weizen.pdf. Accessed 12 Feb 2018.
  34. Jensen ES (1996) Rhizodeposition of N by pea and barley and its effect on soil N dynamics. Soil Biol Biochem 28(1):65–71CrossRefGoogle Scholar
  35. Khan HR, Paull JG, Siddique KHM, Stoddard FL (2010) Faba bean breeding for drought-affected environments: a physiological and agronomic perspective. Field Crop Res 115(3):279–286.  https://doi.org/10.1016/j.fcr.2009.09.003 CrossRefGoogle Scholar
  36. Knudsen M, Hauggaard-Nielsen H, Jornsgard B, Jensen E (2004) Comparison of interspecific competition and N use in pea–barley, faba bean–barley and lupin–barley intercrops grown at two temperate locations. J Agr Sci 142(6):617–627.  https://doi.org/10.1017/S0021859604004745 CrossRefGoogle Scholar
  37. Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots withstanding their environment. Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.01335.
  38. Kutschera L, Lichtenegger E, Sobotnik M (2009) Wurzelatlas der Kulturpflanzen gemäßigter Gebiete mit Arten des Feldgemüsebaues. DLG-Verlag, Frankfurt am MainGoogle Scholar
  39. Lei P, Bauhus J (2010) Use of near-infrared reflectance spectroscopy to predict species composition in tree fine-root mixtures. Plant Soil 333(1–2):93–103.  https://doi.org/10.1007/s11104-010-0325-2 CrossRefGoogle Scholar
  40. Lenth RV (2016) Least-squares means. The R package lsmeans. J Stat Softw 69(1).  https://doi.org/10.18637/jss.v069.i01
  41. Li L, Yang S, Li X, Zhang F, Christie P (1999) Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant Soil 212(2):105–114CrossRefGoogle Scholar
  42. Li L, Sun J, Zhang F, Li X, Yang S, Rengel Z (2001) Wheat/maize or wheat/soybean strip intercropping. Field Crop Res 71(2):123–137.  https://doi.org/10.1016/S0378-4290(01)00156-3 CrossRefGoogle Scholar
  43. Li L, Sun J, Zhang F, Guo T, Bao X, Smith FA, Smith SE (2006) Root distribution and interactions between intercropped species. Oecologia 147(2):280–290.  https://doi.org/10.1007/s00442-005-0256-4 CrossRefGoogle Scholar
  44. Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci U S A 104(27):11192–11196.  https://doi.org/10.1073/pnas.0704591104 CrossRefGoogle Scholar
  45. Li QZ, Sun JH, Wei XJ, Christie P, Zhang FS, Li L (2011) Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant Soil 339(1–2):147–161.  https://doi.org/10.1007/s11104-010-0561-5 CrossRefGoogle Scholar
  46. Li C, Dong Y, Li H, Shen J, Zhang F (2014) The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and Faba bean (Vicia faba L.). PLoS One 9(12):e115804.  https://doi.org/10.1371/journal.pone.0115804 CrossRefGoogle Scholar
  47. Li C, Dong Y, Li H, Shen J, Zhang F (2016) Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted. Sci Rep 6.  https://doi.org/10.1038/srep18663
  48. Link W, Arbaoui M (2005) Neues von der Göttinger Winter-Ackerbohne. In: HBLFA Raumberg-Gumpenstein (ed), Bericht über die 56. Tagung 2005 der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs. Irdning, pp 1–8.Google Scholar
  49. Lithourgidis AS, Vasilakoglou IB, Dhima KV, Dordas CA, Yiakoulaki MD (2006) Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crop Res 99(2):106–113.  https://doi.org/10.1016/j.fcr.2006.03.008 CrossRefGoogle Scholar
  50. Lynch JP (2007) Turner review no. 14. Roots of the second green revolution. Aust J Bot 55(5):493–512.  https://doi.org/10.1071/BT06118 CrossRefGoogle Scholar
  51. Ma Z, Chen HYH (2016) Effects of species diversity on fine root productivity in diverse ecosystems. A global meta-analysis. Glob Ecol Biogeogr 25(11):1387–1396.  https://doi.org/10.1111/geb.12488 CrossRefGoogle Scholar
  52. Mariotti M, Masoni A, Ercoli L, Arduini I (2009) Above- and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass Forage Sci 64(4):401–412.  https://doi.org/10.1111/j.1365-2494.2009.00705.x CrossRefGoogle Scholar
  53. Meinen C, Rauber R (2015) Root discrimination of closely related crop and weed species using FT MIR-ATR spectroscopy. Front Plant Sci 6:765.  https://doi.org/10.3389/fpls.2015.00765 CrossRefGoogle Scholar
  54. Menke CA (2011) Evaluierung von Winterzwischenfrüchten in einem Zweikultur-Nutzungssystem mit Mais für die Biogaserzeugung. Cuvillier, GoettingenGoogle Scholar
  55. Muñoz-Romero V, Benítez-Vega J, López-Bellido L, López-Bellido RJ (2010) Monitoring wheat root development in a rainfed vertisol. Tillage effect. Eur J Agron 33(3):182–187.  https://doi.org/10.1016/j.eja.2010.05.004 CrossRefGoogle Scholar
  56. Muñoz-Romero V, López-Bellido L, López-Bellido RJ (2011) Faba bean root growth in a vertisol: tillage effects. Field Crop Res 120(3):338–344.  https://doi.org/10.1016/j.fcr.2010.11.008 CrossRefGoogle Scholar
  57. Nachi N, Le Guen J (1996) Dry matter accumulation and seed yield in faba bean (Vicia faba L) genotypes. Agronomie 16(1):47–59.  https://doi.org/10.1051/agro:19960103 CrossRefGoogle Scholar
  58. Naumann D (2000) Infrared spectroscopy in microbiology. In: Wiley J, Ltd S (eds) Encyclopedia of analytical chemistry. R.A. Meyers, Chichester, pp 102–131Google Scholar
  59. Naumann A, Heine G, Rauber R (2010) Efficient discrimination of oat and pea roots by cluster analysis of Fourier transform infrared (FTIR) spectra. Field Crop Res 119(1):78–84.  https://doi.org/10.1016/j.fcr.2010.06.017 CrossRefGoogle Scholar
  60. Nelson SC, Robichaux RH (1997) Identifying plant architectural traits associated with yield under intercropping: implications of genotype-cropping system interactions. Plant Breed 116(2):163–170CrossRefGoogle Scholar
  61. Nielsen DC, Halvorson AD (1991) Nitrogen fertility influence on water stress and yield of winter wheat. Agron J 83(6):1065–1070CrossRefGoogle Scholar
  62. Pampana S, Masoni A, Arduini I (2016) Response of cool-season grain legumes to waterlogging at flowering. Can J Plant Sci 96(4):597–603CrossRefGoogle Scholar
  63. Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Maintainer R (2017) Package ‘nlme’. Linear and Nonlinear Mixed Effects Models version 2017:3–1Google Scholar
  64. Pristeri A, Dahlmann C, von Fragstein P, Gooding MJ, Hauggaard-Nielsen H, Kasyanova E, Monti M (2006) Yield performance of Faba bean–wheat intercropping on spring and winter sowing in European organic farming system. In: Joint organic congressGoogle Scholar
  65. R Core Team (2016) R:. a language and environment for statistical computing. In: R Foundation for statistical computing. Vienna, AustriaGoogle Scholar
  66. Rauber R, Schmidtke K, Kimpel-Freund H (2001) The performance of pea (Pisum sativum L.) and its role in determining yield advantages in mixed stands of pea and oat (Avena sativa L.). J Agron Crop Sci 187(2):137–144.  https://doi.org/10.1046/j.1439-037X.2001.00508.x CrossRefGoogle Scholar
  67. Rengasamy JI, Reid JB (1993) Root system modification of faba beans (Vicia faba L.), and its effects on crop performance. 1. Responses of root and shoot growth to subsoiling, irrigation and sowing date. Field Crop Res 33(3):175–196.  https://doi.org/10.1016/0378-4290(93)90079-3 CrossRefGoogle Scholar
  68. Rewald B, Meinen C (2013) Plant roots and spectroscopic methods - analyzing species, biomass and vitality. Front Plant Sci 4:393.  https://doi.org/10.3389/fpls.2013.00393 CrossRefGoogle Scholar
  69. Rewald B, Meinen C, Trockenbrodt M, Ephrath JE, Rachmilevitch S (2012) Root taxa identification in plant mixtures – current techniques and future challenges. Plant Soil 359:165–182.  https://doi.org/10.1007/s11104-012-1164-0 CrossRefGoogle Scholar
  70. Schroetter S, Schnug E, Rosasik J (2006) Root growth and agricultural management. In: Taylor & Francis (ed), encyclopedia of soil science. Soil fertility and plant. Nutrients:1531–1544.  https://doi.org/10.1081/E-ESS-120016142.
  71. Tofinga MP, Paolini R, Snaydon RW (1993) A study of root and shoot interactions between cereals and peas in mixtures. J Agr Sci 120(1):13–24.  https://doi.org/10.1017/S0021859600073548 CrossRefGoogle Scholar
  72. Tsubo M, Walker S (2004) Shade effects on Phaseolus vulgaris L. intercropped with Zea mays L. under well-watered conditions. J Agron Crop Sci 190(3):168–176.  https://doi.org/10.1111/j.1439-037X.2004.00089.x CrossRefGoogle Scholar
  73. Turpin JE, Herridge DF, Robertson MJ (2002) Nitrogen fixation and soil nitrate interactions in field-grown chickpea (Cicer arietinum) and fababean (Vicia faba). Aust J Agric Res 53(5):599–608.  https://doi.org/10.1071/AR01136 CrossRefGoogle Scholar
  74. Wasson AP, Rebetzke GJ, Kirkegaard JA, Christopher J, Richards RA, Watt M (2014) Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding. J Exp Bot 65(21):6231–6249.  https://doi.org/10.1093/jxb/eru250 CrossRefGoogle Scholar
  75. Watiki JM, Fukai S, Banda JA, Keating BA (1993) Radiation interception and growth of maize/cowpea intercrop as affected by maize plant density and cowpea cultivar. Field Crop Res 35(2):123–133.  https://doi.org/10.1016/0378-4290(93)90145-D CrossRefGoogle Scholar
  76. White KE, Reeves JB, Coale FJ (2011) Mid-infrared diffuse reflectance spectroscopy for the rapid analysis of plant root composition. Geoderma 167:197–203.  https://doi.org/10.1016/j.geoderma.2011.08.009 CrossRefGoogle Scholar
  77. Wilson JB (1988) Shoot competition and root competition. J Appl Ecol 25:279–296CrossRefGoogle Scholar
  78. Xia HY, Zhao JH, Sun JH, Bao XG, Christie P, Zhang FS, Li L (2013) Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crop Res 150:52–62.  https://doi.org/10.1016/j.fcr.2013.05.027 CrossRefGoogle Scholar
  79. Xiao Y, Li L, Zhang F (2004) Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15 N techniques. Plant Soil 262(1–2):45–54.  https://doi.org/10.1023/B:PLSO.0000037019.34719.0d CrossRefGoogle Scholar
  80. Yang CH, Chai Q, Huang GB (2010) Root distribution and yield responses of wheat/maize intercropping to alternate irrigation in the arid areas of Northwest China. Plant Soil Environ 56(6):253–562CrossRefGoogle Scholar
  81. Zhang F, Shen J, Li L, Liu X (2004a) An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant Soil 260(1):89–99.  https://doi.org/10.1023/B:PLSO.0000030192.15621.20 CrossRefGoogle Scholar
  82. Zhang X, Pei D, Chen S (2004b) Root growth and soil water utilization of winter wheat in the North China plain. Hydrol Process 18(12):2275–2287.  https://doi.org/10.1002/hyp.5533 CrossRefGoogle Scholar
  83. Zhang WP, Liu GC, Sun JH, Zhang LZ, Weiner J, Li L (2015) Growth trajectories and interspecific competitive dynamics in wheat/maize and barley/maize intercropping. Plant Soil 397(1):227–238.  https://doi.org/10.1007/s11104-015-2619-x CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Crop Sciences, Division of AgronomyUniversity of GoettingenGoettingenGermany
  2. 2.Centre of Biodiversity and Sustainable Land Use (CBL)University of GoettingenGoettingenGermany
  3. 3.Tropical Plant Production and Agricultural Systems Modelling (TROPAGS)University of GoettingenGoettingenGermany
  4. 4.Department of Crop Sciences, Division of Plant BreedingUniversity of GoettingenGoettingenGermany

Personalised recommendations