Plant and Soil

, Volume 435, Issue 1–2, pp 367–384 | Cite as

Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. Durum) growth promoting bacteria

  • Brenda Valenzuela-Aragon
  • Fannie Isela Parra-Cota
  • Gustavo Santoyo
  • Guillermo Luis Arellano-Wattenbarger
  • Sergio de los Santos-VillalobosEmail author
Regular Article


Background and aims

In this work we present the development of an easy and feasible in vivo alternative to identify promising Plant Growth Promoting Bacteria (PGPB), using wheat -as a model plant- growing under variable soil and climate conditions.


The identification of promising strains was carried out by Plant-Assistant Selection (PAS) (compared with the conventional PGPB selection, named in this work as Metabolic Traits Selection or MTS). We validated the ability of the obtained strains by PAS to promote wheat growth, by analyzing biometric and nutrimental parameters, as well as the relative expressions of NRT1.4, GluTR, and 6-SFT1 genes.


Twenty strains were obtained by PAS (170 bacterial strains were originally co-inoculated to plants), of which, twelve strains showed the ability to promote wheat growth mainly by the stem development and the number of leaves. Moreover, thirteen strains up-regulated the 6-SFT1 gene, and three strains up-regulated the GluTR gen. Thus, the strains Enterobacter cloacae TS3, Microbacterium foliorum TS9, Bacillus cereus TS10, Paenibacillus lautus TE8, and Paenibacillus lautus TE10 were identified as promising PGPB, showing strong wheat growth promotion events compared with those strains obtained by MTS.


PAS is an easy and feasible alternative for identification of PGPB. However, ecological and economic factors need to be investigated to use the obtained strains by PAS for commercial microbial inoculants formulations.


Microbial inoculants Climate conditions PGPB Gene expression, endophytes 


16S rRNA

16S ribosomal RNA

18S rRNA

18S ribosomal RNA


Suc:fructan 6-fructosyltransferase


Colony forming units


Glyceraldehyde-3-phosphate dehydrogenase


Glutamyl-tRNA reductase 1


Metabolic Traits Selection


Nitrate transporter 1.4


Plant-Assistant Selection


Plant Growth Promoting Bacteria



The authors acknowledge support by the Cátedras CONACyT Program through Project 1774 “Alternativas agrobiotecnológicas para incrementar la competitividad del cultivo de trigo en el Valle del Yaqui: desde su ecología microbiana hasta su adaptabilidad al cambio climático”; CONACyT Project 253663 “Fortalecimiento de la infraestructura del Laboratorio de Biotecnología del Recurso Microbiano del ITSON para la creación de COLMENA: COLección de Microrganismos Edáficos y Endófitos NAtivos, para contribuir a la seguridad alimentaria regional y nacional”; and CONACyT Project 257246 “Interacción trigo x microorganismos promotores del crecimiento vegetal: identificando genes con potencial agro-biotecnológico”, and scholarship 703393 (Brenda Valenzuela Aragon).


  1. Alcántar G, Sandoval M (1999) Manual de análisis químico de tejido vegetal. MexicoGoogle Scholar
  2. Alexander D (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fert Soils 12:39–45CrossRefGoogle Scholar
  3. Alvarado M, Beltran MA, Rios P, Martinez M, Amora E, Carreon-Abud (2014) Dinámica estacional de comunidades microbianas en huertas de aguacate con diferente uso de suelo. Biológicas 16:19–24Google Scholar
  4. Ambrosini A, de Souza R, Passaglia L (2016) Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400:193–207. CrossRefGoogle Scholar
  5. Arzani A, Ashraf M (2017) Cultivated ancient wheats (Triticum spp.): a potential source of health-beneficial food products. Compr Rev Food Sci Food Saf 16:477–488. CrossRefGoogle Scholar
  6. Asmelash F, Bekele T, Birhane E (2016) The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol 7:1–15. CrossRefGoogle Scholar
  7. Barra P, Inostroza N, Acuña J, Mora M, Crowley D, Jorquera M (2016) Formulation of bacterial consortia from avocado (Persea americana mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol 102:80–91. CrossRefGoogle Scholar
  8. Berendsen R, Pieterse C, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486CrossRefGoogle Scholar
  9. Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. CrossRefGoogle Scholar
  10. Brahmaprakash G, Sahu P (2012) Biofertilizers for sustainability. J Indian Inst Sci 92:37–62Google Scholar
  11. Brouns F, van Buul V, Shewry P (2013) Does wheat make us fat and sick? J Cereal Sci 58:209–215. CrossRefGoogle Scholar
  12. Camelo M, Vera S, Bonilla R (2011) Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Revista CORPOICA 12:159–166. CrossRefGoogle Scholar
  13. Canfora L, Malusà E, Tkaczuk C, Tartanus M, Łabanowska B, Pinzari F (2016) Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil. Sci Rep 6:22933. CrossRefGoogle Scholar
  14. Chang C, Lu J, Zhang H, Ma C, Sun G (2015) Copy number variation of cytokinin oxidase gene Tackx4 associated with grain weight and chlorophyll content of flag leaf in common wheat. PLoS One 10:1–15. Google Scholar
  15. Cherif-silini H, Silini A, Yahiaoui B, Ouzari I (2016) Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann Microbiol 66:1087–1097. CrossRefGoogle Scholar
  16. Chiu C, Lin C, Hsia A, Su LH, Tsay Y (2004) Mutation of a nitrate transporter, AtNRT1: 4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol 45:1139–1148CrossRefGoogle Scholar
  17. Compant S, Reiter B, Nowak J, Sessitsch A, Clément C, Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth- promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693. CrossRefGoogle Scholar
  18. Curci A (2017) Measurement issues in the study of flashbulb memory. In: Luminet O, Curci A (ed) Flashbulb Memories, 2nd. London, pp 27–46Google Scholar
  19. Dal Cortivo C, Barion G, Visioli G, Mattarozzi M, Mosca G, Vamerali T (2017) Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: assessment of plant-microbe interactions by ESEM. Agric Ecosyst Environ 247:396–408. CrossRefGoogle Scholar
  20. de los Santos Villalobos S, de Folter S, Délano Frier JP, Gómez Lim MA, Guzmán Ortiz DA, Peña Cabriales JJ (2013) Growth promotion and flowering induction in mango (Mangifera indica L. cv “Ataulfo”) trees by Burkholderia and Rhizobium inoculation: morphometric, biochemical, and molecular events. J Plant Growth Regul 32:615–627. CrossRefGoogle Scholar
  21. de los Santos Villalobos S, Parra Cota F, Herrera Sepúlveda A, Valenzuela Aragón B, Estrada Mora J (2018) Colmena: colección de microorganismos edáficos y endófitos nativos, para contribuir a la seguridad alimentaria nacional. REMEXCA 9:191–202. Google Scholar
  22. de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419. CrossRefGoogle Scholar
  23. Diario Oficial de la Federación (DOF) (2000). Norma Oficial Mexicana NOM-021-RECNAT-2000. In : Diario Oficial de la Federación. Available via DOF Accessed 15 Jan 2018
  24. Dohrmann AB, Küting M, Jünemann S, Jaenicke S, Schlüter A, Tebbe CC (2013) Importance of rare taxa for bacterial diversity in the rhizosphere of Bt-and conventional maize varieties. ISME J 7:37CrossRefGoogle Scholar
  25. FAO (2018) World Food Situation. Available via FAO Accessed 12 Jan 2018
  26. Fischer RA (2011) Wheat physiology: a review of recent developments. Crop Pasture Sci 62:95–114CrossRefGoogle Scholar
  27. Groppa MD, Tomaro ML, Benavides MP (2007) Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. BioMetals 20:185–195. CrossRefGoogle Scholar
  28. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240. CrossRefGoogle Scholar
  29. Guo T, Xuan H, Yang Y, Wang L, Wei L, Wang Y, Kang G (2014) Transcription analysis of genes encoding the wheat root transporter NRT1 and NRT2 families during nitrogen starvation. J Plant Growth Regul 33:837–848CrossRefGoogle Scholar
  30. Hassan TU, Bano A (2015) Role of carrier-based biofertilizer in reclamation of saline soil and wheat growth. Arch Agron Soil Sci 61:1719–1731. CrossRefGoogle Scholar
  31. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. CrossRefGoogle Scholar
  32. Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485. CrossRefGoogle Scholar
  33. Hu P, Wang D, Cassidy MJ, Stanier SA (2014) Predicting the resistance profile of a spudcan penetrating sand overlying clay. Can Geotech J 51:1151–1164. CrossRefGoogle Scholar
  34. Ilangumaran G, Smith DL (2017) Plant growth promoting Rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1–14. CrossRefGoogle Scholar
  35. International Maize and Wheat Improvement Center (CIMMYT) (2018) Wheat Atlas by CIMMYT. Available via CIMMYT Accessed 14 Jan 2018
  36. Jarošová J, Kundu JK (2010) Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol 10:146CrossRefGoogle Scholar
  37. Kibblewhite M, Ritz K, Swift M (2008) Soil health in agricultural systems. Philos Trans R Soc Lond Ser B Biol Sci 363:685–701. CrossRefGoogle Scholar
  38. Lares-orozco MF, Robles-morúa A, Yepez EA, Handler RM (2016) Global warming potential of intensive wheat production in the Yaqui Valley, Mexico : a resource for the design of localized mitigation strategies. J Clean Prod 127:522–532. CrossRefGoogle Scholar
  39. Livak K, Schimttgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods 25:402–408CrossRefGoogle Scholar
  40. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556. CrossRefGoogle Scholar
  41. Mahmood S, Ahmad M, Ahmad Z, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448. CrossRefGoogle Scholar
  42. Meisner CA, Acevedo E, Flores D, Sayre KD, Ortiz-Monasterio I, Byerlee D (1992) Wheat production and grower practices in the Yaqui Valley. Sonora, CIMMYT Wheat Special Report (WPSR)Google Scholar
  43. Meléndez MG, Camargo GZ, Meza Contreras JJ, Sepúlveda AH, de los Santos Villalobos S, Parra Cota FI (2017) Abiotic stress tolerance of microorganisms associated with oregano (Origanum vulgare L.) in the Yaqui Valley, Sonora. Open Agriculture 2:260–265. CrossRefGoogle Scholar
  44. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter T, Emori S, Kainuma M, Kram T, Meehl G, Mitchell J, Nakicenovic N, Riahi K, Smith S, Stouffer R, Thomson A, Weyant J, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. CrossRefGoogle Scholar
  45. Onyia CE, Anyanwu CU (2013) Comparative study on solubilization of tricalcium phosphate (TCP) by phosphate solubilizing fungi (PSF) isolated from Nsukka pepper plant rhizosphere and root free soil. J Yeast Fungal Res 4:52–57Google Scholar
  46. Philippot L, Raaijmakers JM, Lemanceau P, Van Der WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. CrossRefGoogle Scholar
  47. Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20CrossRefGoogle Scholar
  48. Rao AN (2013). Food, Agriculture and Education: Science and Technology Education and Future Human Needs (Vol. 6). Elsevier, United KingdomGoogle Scholar
  49. Red de estaciones meteorológicas automatizadas de Sonora (REMAS) (2018) Available via REMAS Accessed 17 Nov 2018
  50. Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agric Sci 144(3).
  51. Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, Rocha-Granados MC, Macías-Rodríguez L, Santoyo G (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. World Res J Agric Biotechnol 13:46–52. Google Scholar
  52. Ruuska SA, Rebetzke GJ, van Herwaarden AF, Richards RA, Fettell NA, Tabe L, Jenkins CL (2006) Genotypic variation in water-soluble carbohydrate accumulation in wheat. Funct Plant Biol 33:799–809CrossRefGoogle Scholar
  53. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. CrossRefGoogle Scholar
  54. Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29. CrossRefGoogle Scholar
  55. Servicio de Información Agroalimentaria y Pesquera (SIAP) (2018) Avance de siembras y cosechas. Available via SIAP Accessed 12 Jan 2018
  56. Sharip Z, Schooler SS, Hipsey MR, Hobbs RJ (2012) Eutrophication, agriculture and water level control shift aquatic plant communities from floating-leaved to submerged macrophytes in Lake Chini. Malaysia Biol Invasions 14:1029–1044. CrossRefGoogle Scholar
  57. Shewry PR, Hey SJ (2015) The contribution of wheat to human diet and health. Food Energy Secur 4:178–202. CrossRefGoogle Scholar
  58. Smith CR, Blair PL, Boyd C, Cody B, Hazel A, Hedrick A, Kathuria H, Khurana P, Kramer B, Muterspaw K, Peck C, Sells E, Skinner J, Tegeler C, Wolfe Z (2016) Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecol Evol 6:8075–8084. CrossRefGoogle Scholar
  59. Stephenson TJ, McIntyre CL, Collet C, Xue GP (2011) TaNF-YB3 is involved in the regulation of photosynthesis genes in Triticum aestivum. Funct Integr Genomics 11:327–340CrossRefGoogle Scholar
  60. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671CrossRefGoogle Scholar
  61. Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson A (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:1–10. CrossRefGoogle Scholar
  62. Trabelsi D, Mhamdi R (2013) Microbial Inoculants and Their Impact on Soil Microbial Communities : A Review BioMed Res IntGoogle Scholar
  63. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. CrossRefGoogle Scholar
  64. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):573CrossRefGoogle Scholar
  65. Velten S, Leventon J, Jager N, Newig J (2015) What is sustainable agriculture? A Syst Rev Sustain 7:7833–7865. Google Scholar
  66. Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, de los Santos-Villalobos S (2018) The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Mex J Phytopathol 36:95–130. Google Scholar
  67. Wang Y, Liu S, Zhang H, Zhao Y, Zhao H, Liu H (2014) Glycine betaine application in grain filling wheat plants alleviates heat and high light-induced photoinhibition by enhancing the psbA transcription and stomatal conductance. Acta Physiol Plant 36:2195–2202. CrossRefGoogle Scholar
  68. Weinberg ZG, Muck RE, Weimer PJ (2003) The survival of silage inoculant lactic acid bacteria in rumen fluid. J Appl Microbiol 94:1066–1071. CrossRefGoogle Scholar
  69. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 6S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  70. Xue GP, McIntyre CL, Jenkins CL, Glassop D, van Herwaarden AF, Shorter R (2008) Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. Plant Physiol 146:441–454Google Scholar
  71. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421CrossRefGoogle Scholar
  72. Zhen Z, Liu H, Wang N, Guo L, Meng J, Ding N, Wu G, Jiang G (2014) Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS One 9:e108555CrossRefGoogle Scholar
  73. Zhou C, Li F, Xie Y, Zhu L, Xiao X, Ma Z, Wang J (2017) Involvement of abscisic acid in microbe-induced saline-alkaline resistance in plants. Plant Signal Behav 2324.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Brenda Valenzuela-Aragon
    • 1
  • Fannie Isela Parra-Cota
    • 2
  • Gustavo Santoyo
    • 3
  • Guillermo Luis Arellano-Wattenbarger
    • 1
  • Sergio de los Santos-Villalobos
    • 4
    Email author
  1. 1.Instituto Tecnológico de SonoraCiudad ObregónMexico
  2. 2.Campo Experimental Norman E. BorlaugInstituto Nacional de Investigaciones Forestales Agrícolas y PecuariasCd. ObregónMexico
  3. 3.Instituto de Investigaciones Químico BiológicasUniversidad Michoacana de San Nicolás de Hidalgo, Ciudad UniversitariaMoreliaMexico
  4. 4.CONACYT- Instituto Tecnológico de SonoraCiudad ObregónMexico

Personalised recommendations