Skip to main content
Log in

Contribution of arbuscular mycorrhizal symbiosis to the survival of psammophilic plants after sea water flooding

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Plants on coastal sand dunes are subjected to strong environmental fluctuations which affect their growth and survival. Sea water invasion of the dunar zone caused by storms is an important factor that determines the persistence of a plant community. In the present study, the benefits of arbuscular mycorrhiza on psammophilic plant species subjected to sea water flooding episodes were evaluated under controlled conditions and the effect of sea water on in vitro spore production was determined.

Methods

In a greenhouse experiment, the growth response of nine plant species to inoculation with Glomus intraradices in beach sand was evaluated. A second experiment was designed in order to test if plant survival under sea water flooding was influenced by the symbiosis. A third experiment was conducted in vitro to quantify the effect of sea water on the production of G. intraradices spores.

Results

Glomus intraradices was effective in promoting plant growth and survival in beach sand and promoted the survival of some species subjected to flooding events. Spore production was inhibited by 50% of sea water in the growth media, but not by 10% sea water.

Conclusions

Results obtained under controlled conditions indicated that arbuscular mycorrhiza can improve the establishment of certain dune plant species in beach sand as the symbiosis contributes to enhanced plant tolerance against occasional sea water flooding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beena KR, Raviraja NS, Arun AB, Sridhar KR (2000) Diversity of arbuscular mycorrhizal fungi on coastal sand dunes of west coast of India. Curr Sci 79(10):1459–1466

    CAS  Google Scholar 

  • Camprubi A, Calvet C (1996) Isolation and screening of mycorrhizal fungi from citrus nurseries and orchards and inoculation studies. Hortscience 31:366–369

    Google Scholar 

  • Camprubi A, Calvet C, Cabot P, Pitet M, Estaun V (2010) Arbuscular mycorrhizal fungi associated with psammophilic vegetation in Mediterranean coastal sand dunes. Span J Agric Res 8:96–102

    Google Scholar 

  • Camprubi A, Estaun V, Calvet C (2011) Greenhouse inoculation of psammophilic plant species with arbuscular mycorrhizal fungi to improve survival and early growth. Eur J Soil Biol. doi:10.10.16/j.ejsobi.2011.02.001

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233(2):269–281

    Article  CAS  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass production of arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242

    Article  Google Scholar 

  • Diop TA, Plenchette C, Strullu DG (1994) Dual axenic culture of sheared-root inocula of vesicular-arbuscular mycorrhizal fungi associated with tomato roots. Mycorrhiza 5:17–22

    Article  Google Scholar 

  • Estaún V (1989) Effect of sodium chloride and mannitol on germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Agric Ecosyst Environ 29:123–129

    Article  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Botany 104:1263–1280

    Article  CAS  Google Scholar 

  • Garcia HV, Mendoza RE (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17:167–174

    Article  PubMed  Google Scholar 

  • Giovannetti M (1985) Seasonal variations of vesicular-arbuscular and endogonaceous spores in a maritime sand dune. Trans Brit Mycol Soc 84(4):679–684

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 87:489–500

    Article  Google Scholar 

  • Hirrell MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–655

    Article  Google Scholar 

  • Jakobsen I (1994) Research approaches to study the functioning of vesicular-arbuscular mycorrhizae in the field. Plant Soil 159:141–147

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecol 55:45–53

    Article  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  PubMed  CAS  Google Scholar 

  • Koske RE, Polson WR (1984) Are VA mycorrhizae required for sand dune stabilization? BioScience 34:420–424

    Article  Google Scholar 

  • Koske RE, Tews LL (1987) Vesicular-arbuscular mycorrhizal fungi of Wisconsin sandy soils. Mycologia 76(6):901–905

    Article  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Koske RE, Gemma JN (1990) VA mycorrhizae in strand vegetation of Hawaii: evidence for long-distance codispersal of plants and fungi. Am J Botany 77(4):466–474

    Article  Google Scholar 

  • Koske RE, Bonin C, Kelly J, Martinez C (1996) Effects of sea water on spore germination of sand dune inhabiting arbuscular mycorrhizal fungus. Mycologia 88:947–950

    Article  Google Scholar 

  • Koske RE, Gemma JN, Corkidi L, Sigüenza C, Rincón E (2004) Arbuscular mycorrhizas in coastal sand dunes. In: Martinez M, Psuty N, Lubke R (eds) Coastal Sand Dunes: Ecology and Restoration. Springer, The Netherlands, pp 173–187

    Google Scholar 

  • Kowalchuk GA, De Souza FA, Van Veen JA (2002) Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol 11:571–581

    Article  PubMed  CAS  Google Scholar 

  • Little LR, Maun MA (1996) The “Ammophila problem” revised: a role for mycorrhizal fungi. J Ecol 84(1):1–7

    Article  Google Scholar 

  • Maremmani A, Bedini S, Matosevic I, Tomei E, Giovannetti M (2003) Type of mycorrhizal associations in two coastal nature reserves of Mediterranean basin. Mycorrhiza 13:33–40

    Article  PubMed  Google Scholar 

  • McMillen B, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30(13):1639–1646

    Article  CAS  Google Scholar 

  • Mendoza R, Escudero V, Garcia I (2005) Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil. Plant Soil 275:305–315

    Article  CAS  Google Scholar 

  • Pfeiffer CM, Bloss HE (1988) Growth and nutrition of Guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytol 108:315–321

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth response of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Rabie H (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15:225–230

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Echevarria S, Hol WHG, Freitas H, Eason WR, Cook R (2007) Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: spore abundance and root colonization in six locations of the European coast. Eur J Soil Biol 44(1):30–36

    Article  Google Scholar 

  • Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and effectivity of an autochthonous arbuscular mycorrhizal Glomus sp from saline soils and Glomus deserticola under salinity. Mycorrhiza 10(3):137–143

    Article  CAS  Google Scholar 

  • St. Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth an spore production of arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Strullu DG, Romand C (1986) Méthodes d’obtention d’endomycorhizes à vésicules et arbuscules en conditions axéniques. C R Acad Sci Paris 303:245–250

    Google Scholar 

  • Turrini A, Avio L, Bedini S, Giovannetti M (2008) In situ collection of endangered arbuscular mycorrhizal fungi in a Mediterranean UNESCO Biosphere Reserve. Biodivers Conserv 17:643–657

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Fondo Europeo de Desarrollo Regional (FEDER) and by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) project RTA2007-00039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelia Camprubi.

Additional information

Responsible Editor: Erik J. Joner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camprubi, A., Abril, M., Estaun, V. et al. Contribution of arbuscular mycorrhizal symbiosis to the survival of psammophilic plants after sea water flooding. Plant Soil 351, 97–105 (2012). https://doi.org/10.1007/s11104-011-0933-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0933-5

Keywords

Navigation