PRPs localized to the middle lamellae are required for cortical tissue integrity in Medicago truncatula roots

  • B. Joy Erickson
  • Nathan C. Staples
  • Nicole Hess
  • Michelle A. Staples
  • Christian Weissert
  • Ruth R. FinkelsteinEmail author
  • James B. Cooper


Key message

A family of repetitive proline-rich proteins interact with acidic pectins and play distinct roles in legume root cell walls affecting cortical and vascular structure.


A proline-rich protein (PRP) family, composed of tandemly repeated Pro-Hyp-Val-X-Lys pentapeptide motifs, is found primarily in the Leguminosae. Four distinct size classes within this family are encoded by seven tightly linked genes: MtPRP1, MtPRP2 and MtPRP3, and four nearly identical MtPRP4 genes. Promoter fusions to β-glucuronidase showed strong expression in the stele of hairy roots for all 4 PRP genes tested, with additional expression in the cortex for PRP1, PRP2 and PRP4. All except MtPRP4 are strongly expressed in non-tumorous roots, and secreted and ionically bound to root cell walls. These PRPs are absent from root epidermal cell walls, and PRP accumulation is highly localized within the walls of root cortical and vascular tissues. Within xylem tissue, PRPs are deposited in secondary thickenings where it is spatially exclusive to lignin. In newly differentiating xylem, PRPs are deposited in the regularly spaced paired-pits and pit membranes that hydraulically connect neighboring xylem elements. Hairpin-RNA knock-down constructs reducing PRP expression in Medicago truncatula hairy root tumors disrupted cortical and vascular patterning. Immunoblots showed that the knockdown tumors had potentially compensating increases in the non-targeted PRPs, all of which cross-react with the anti-PRP antibodies. However, PRP3 knockdown differed from knockdown of PRP1 and PRP2 in that it greatly reduced viability of hairy root tumors. We hypothesize that repetitive PRPs interact with acidic pectins to form block-copolymer gels that can play distinct roles in legume root cell walls.


Proline-rich proteins (PRPs) Medicago Root cell walls Pectins Root structure 



Portions of this work were supported by the Department of Energy Biosciences program (DE-FG03-95ER20192) to JBC, and by a UC Biotechnology Training Grant. We gratefully thank Dr. Mary Tierney (University of Vermont) for a gift of anti-soybean PRP2 antibodies, Dr. Monte Radeke for help with peptide synthesis and advice on producing anti-peptide antibodies, Dr. Brian Matsumoto and Dr. Mary Raven for advice and training on the confocal microscope and for use of a vibratome, and Laura Polacco, Lucas Hanscom, Scott Spivack, Kim O'Keefe, Julia Dubiel, Mario Guzman, and Emily Garcia for general laboratory assistance.

Author contributions

JBC conceived and obtained funding for the project. JBC and RRF conceived and supervised experiments. BJE, NCS, NH, CW and MAS conceived and performed experiments. All authors contributed to writing or providing feedback on the manuscript.

Supplementary material

11103_2019_960_MOESM1_ESM.pdf (56 kb)
Supplementary file1 (PDF 55 kb)
11103_2019_960_MOESM2_ESM.pdf (495 kb)
Supplementary file2 (PDF 494 kb)


  1. Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allison LA, Kiss GB, Bauer P, Poiret M, Pierre M, Savouré A, Kondorosi E, Kondorosi A (1993) Identification of two alfalfa early nodulin genes with homology to members of the pea Enod12 gene family. Plant Mol Biol 21:375–380PubMedCrossRefPubMedCentralGoogle Scholar
  3. Averyhart-Fullard V, Datta K, Marcus A (1988) A hydroxyproline-rich protein in the soybean cell wall. Proc Natl Acad Sci USA 85:1082–1085PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barker D, Pfaff T, Moreau D, Groves E, Ruffel S, Lepetit M, Whitehand S, Maillet F, Nair R, Journet E-P (2006) Growing M. truncatula: choice of substrates and growth conditions. In: Mathesius U, Journet E, Sumner L (eds) The Medicago truncatula handbook, Noble Research Institute, ArdmoreGoogle Scholar
  5. Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo AC, Kozik A, Do Kim K, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446PubMedCrossRefPubMedCentralGoogle Scholar
  6. Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker D (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant–Microbe Interact 14:695–700PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30PubMedCrossRefPubMedCentralGoogle Scholar
  8. Casero PJ, Casimiro I, Knox JP (1998) Occurrence of cell surface arabinogalactan-protein and extension epitopes in relation to pericycle and vascular tissue development in the root apex of four species. Planta 204:252–259CrossRefGoogle Scholar
  9. Cassab GI (1998) Plant cell wall proteins. Ann Rev Plant Physiol Plant Mol Biol 49:281–309CrossRefGoogle Scholar
  10. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991PubMedCrossRefPubMedCentralGoogle Scholar
  11. Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89:4938PubMedCrossRefPubMedCentralGoogle Scholar
  12. Dash S, Campbell J, Cannon E, Cleary A, Huang W, Kalberer S, Karingula V, Rice A, Singh J, Umale P, Weeks N, Wilkey A, Farmer A, Cannon S (2016) Legume information system ( a key component of a set of federated data resources for the legume family. Nucl Acids Res 44:D1181–D1188PubMedCrossRefPubMedCentralGoogle Scholar
  13. Datta K, Marcus A (1990) Nucleotide sequence of a gene encoding soybean repetitive proline-rich protein 3. Plant Mol Biol 14:285–286PubMedCrossRefPubMedCentralGoogle Scholar
  14. Datta K, Schmidt A, Marcus A (1989) Characterization of two soybean repetitive proline-rich proteins and a cognate cDNA from germinated axes. Plant Cell 1:945–952PubMedPubMedCentralGoogle Scholar
  15. Duruflé H, Hervé V, Balliau T, Zivy M, Dunand C, Jamet E (2017) Proline hydroxylation in cell wall proteins: Is it yet possible to define rules? Front Plant Sci 8:1802PubMedPubMedCentralCrossRefGoogle Scholar
  16. Esau K (1965) Plant anatomy. Wiley, New YorkGoogle Scholar
  17. Esau K (1977) Anatomy of the seed plants. Wiley, New YorkGoogle Scholar
  18. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fowler TJ, Bernhardt C, Tierney ML (1999) Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol 121:1081–1091PubMedPubMedCentralCrossRefGoogle Scholar
  20. Franssen HJ, Nap J-P, Gloudemans T, Stiekema W, Van Dam H, Govers F, Louwerse J, Van Kammen A, Bisseling T (1987) Characterization of cDNA for nodulin-75 of soybean: a gene product involved in early stages of root nodule development. Proc Natl Acad Sci USA 84:4495–4499PubMedCrossRefPubMedCentralGoogle Scholar
  21. Franssen HJ, Vijn I, Yang WC, Bisseling T (1992) Developmental aspects of the rhizobium-legume symbiosis. Plant Mol Biol 19:89–107PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fry SC (1982) Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem J 204:449–455PubMedPubMedCentralGoogle Scholar
  23. Gamas P, Debellé F, Berges H, Godiard L, Niebel A, Journet E, Gouzy J (2006) Medicago truncatula cDNA and genomic libraries. In: Mathesius U, Journet E, Sumner L (eds) The Medicago truncatula handbook, Noble Research Institute, ArdmoreGoogle Scholar
  24. Garcia J, Barker D, Journet E-P (2006) Seed storage and germination. In: Mathesius U, Journet E, Sumner L (eds) The Medicago truncatula handbook, Noble Research Institute, ArdmoreGoogle Scholar
  25. Hale I, Matsumoto B (1993) Resolution of subcellular detail in thick tissue sections: immunohistochemical preparation and fluorescence confocal microscopy. Methods Cell Biol 38:289–324PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791PubMedPubMedCentralGoogle Scholar
  27. Hong JC, Nagao RT, Key JL (1989) Developmentally regulated expression of soybean proline-rich cell wall protein genes. Plant Cell 1:937–943PubMedPubMedCentralGoogle Scholar
  28. Hong JC, Nagao RT, Key JL (1990) Characterization of a proline-rich cell wall protein gene family of soybean. J Biol Chem 265:2470–2475PubMedPubMedCentralGoogle Scholar
  29. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedPubMedCentralCrossRefGoogle Scholar
  30. Journet E-P, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V (2001) Medicago truncatula ENOD11: A Novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant–Microbe Interact 14:737–748PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kang YJ, Satyawan D, Shim S, Lee T, Lee J, Hwang WJ, Kim SK, Lestari P, Laosatit K, Kim KH, Ha TJ, Chitikineni A, Kim MY, Ko JM, Gwag JG, Moon JK, Lee YH, Park BS, Varshney RK, Lee SH (2015) Draft genome sequence of adzuki bean Vigna angularis. Sci Rep 5:8069PubMedPubMedCentralCrossRefGoogle Scholar
  32. Keller B (1993) Structural cell wall proteins. Plant Physiol 101:1127–1130PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kieliszewski MJ, Lamport DTA (1994) Extensin: Repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5:157–172PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kleis-San Francisco SM, Tierney ML (1990) Isolation and characterization of a proline-rich cell wall protein from soybean seedlings. Plant Physiol 94:1897–1902CrossRefGoogle Scholar
  35. Kreplak J, Madoui M-A, Cápal P, Novák P, Labadie K, Aubert G, Bayer PE, Gali KK, Syme RA, Main D, Klein A, Bérard A, Vrbová I, Fournier C, d’Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo CJ, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Taran B, Bendahmane A, Aury J-M, Batley J, Le Paslier M-C, Ellis N, Warkentin TD, Coyne CJ, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J (2019) A reference genome for pea provides insight into legume genome evolution. Nat Genet 51:1411–1422PubMedCrossRefPubMedCentralGoogle Scholar
  36. Li J, Dai X, Liu T, Zhao PX (2012) LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucl Acids Res 40:D1221–D1229PubMedCrossRefPubMedCentralGoogle Scholar
  37. Li S, Zhang Y, Ding C, Gao X, Wang R, Mo W, Lv F, Wang S, Liu L, Tang Z, Tian H, Zhang J, Zhang B, Huang Q, Lu M, Wuyun T-n, Hu Z, Xia Y, Su X (2019) Proline-rich protein gene PdPRP regulates secondary wall formation in poplar. J Plant Physiol 233:58–72PubMedCrossRefPubMedCentralGoogle Scholar
  38. Lindstrom JT, Vodkin LO (1991) A soybean cell wall protein is affected by seed color genotype. Plant Cell 3:561–571PubMedPubMedCentralGoogle Scholar
  39. Löbler M, Hirsch AM (1993) A gene that encodes a proline-rich nodulin with limited homology to PsENOD12 is expressed in the invasion zone of Rhizobium meliloti-induced alfalfa root nodules. Plant Physiol 103:21–30PubMedPubMedCentralCrossRefGoogle Scholar
  40. Marcus A, Greenberg J, Averyhart-Fullard V (1991) Repetitive proline-rich proteins in the extracellular matrix of the plant cell. Physiol Plant 81:273–279CrossRefGoogle Scholar
  41. Matsushima N, Creutz CE, Kretsinger RH (1990) Polyproline, β-turn helices. Novel secondary structures proposed for the tandem repeats within rhodopsin, synaptophysin, synexin, gliadin, RNA polymerase II, hordein, and gluten. Proteins Struct Funct Bioinform 7:125–155CrossRefGoogle Scholar
  42. Millar DJ, Slabas AR, Sidebottom C, Smith CG, Allen AK, Bolwell GP (1992) A major stress-inducible Mr-42000 wall glycoprotein of French bean (Phaseolus vulgaris L.). Planta 187:176–184PubMedCrossRefPubMedCentralGoogle Scholar
  43. Moore PJ, Staehelin LA (1988) Immunogold localization of the cell-wall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis in Trifolium pratense L.; implication for secretory pathways. Planta 174:433–445PubMedCrossRefPubMedCentralGoogle Scholar
  44. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  45. Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, Tabata R, Kawai T, Tanaka K, Niwa Y, Watanabe Y, Nakamura K, Kimura T, Ishiguro S (2007) Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71:2095–2100PubMedCrossRefPubMedCentralGoogle Scholar
  46. Nam Y-W, Penmetsa RV, Endre G, Uribe P, Kim D, Cook DR (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor Appl Genet 98:638–646CrossRefGoogle Scholar
  47. Newman AM, Cooper JB (2007) XSTREAM: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences. BMC Bioinform 8:382CrossRefGoogle Scholar
  48. Newman AM, Cooper JB (2011) Global analysis of proline-rich tandem repeat proteins reveals broad phylogenetic diversity in plant secretomes. PLoS ONE 6:e23167PubMedPubMedCentralCrossRefGoogle Scholar
  49. Otte O, Barz W (1996) The elicitor-induced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins. Planta 200:238–246CrossRefGoogle Scholar
  50. Otte O, Barz W (2000) Characterization and oxidative in vitro cross-linking of an extensin-like protein and a proline-rich protein purified from chickpea cell walls. Phytochem 53:1–5CrossRefGoogle Scholar
  51. Perlick AM, Pühler A (1993) A survey of transcripts expressed specifically in root nodules of broadbean (Vicia faba L.). Plant Mol Biol 22:957–970PubMedCrossRefPubMedCentralGoogle Scholar
  52. Pichon M, Journet EP, Dedieu A, de Billy F, Truchet G, Barker DG (1992) Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4:1199–1211PubMedPubMedCentralGoogle Scholar
  53. Proft T, Hilbert H, Layh-Schmitt G, Herrmann R (1995) The proline-rich P65 protein of Mycoplasma pneumoniae is a component of the Triton X-100-insoluble fraction and exhibits size polymorphism in the strains M129 and FH. J Bacteriol 177:3370–3378PubMedPubMedCentralCrossRefGoogle Scholar
  54. Sainsbury F, Lomonossoff GP (2014) Transient expressions of synthetic biology in plants. Curr Opin Plant Biol 19:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  55. Scheres B, Van De Wiel C, Zalensky A, Horvath B, Spaink H, Van Eck H, Zwartkruis F, Wolters A-M, Gloudemans T, Van Kammen A, Bisseling T (1990) The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 60:281–294PubMedCrossRefPubMedCentralGoogle Scholar
  56. Schultz C, Harrison M (2008) Novel plant and fungal AGP-like proteins in the Medicago truncatula–Glomus intraradices arbuscular mycorrhizal symbiosis. Mycorrhiza 18:403–412PubMedCrossRefPubMedCentralGoogle Scholar
  57. Sherrier DJ, VandenBosch KA (1994) Localization of repetitive proline-rich proteins in the extracellular matrix of pea root nodules. Protoplasma 183:148–161CrossRefGoogle Scholar
  58. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23PubMedPubMedCentralGoogle Scholar
  59. Suzuki H, Fowler T, Tierney M (1993a) Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Mol Biol 21:109–119PubMedCrossRefPubMedCentralGoogle Scholar
  60. Suzuki H, Wagner T, Tierney ML (1993b) Differential expression of two soybean (Glycine max L.) proline-rich protein genes after wounding. Plant Physiol 101:1283–1287PubMedPubMedCentralCrossRefGoogle Scholar
  61. Swords K, Staehelin LA (1993) Complementary immunolocalization patterns of cell wall hydroxyproline-rich glycoproteins studied with the use of antibodies directed against different carbohydrate epitopes. Plant Physiol 102:891–901PubMedPubMedCentralCrossRefGoogle Scholar
  62. Taylor CB (1997) Promoter fusion analysis: an insufficient measure of gene expression. Plant Cell 9:273–275PubMedCentralCrossRefGoogle Scholar
  63. Verdonk JC, Hatfield RD, Sullivan ML (2012) Proteomic analysis of cell walls of two developmental stages of alfalfa stems. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang T, Zabotina O, Hong M (2012) Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846–9856PubMedCrossRefPubMedCentralGoogle Scholar
  65. Watson BS, Lei Z, Dixon RA, Sumner LW (2004) Proteomics of Medicago sativa cell walls. Phytochemistry 65:1709–1720PubMedCrossRefPubMedCentralGoogle Scholar
  66. Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590PubMedCrossRefPubMedCentralGoogle Scholar
  67. White PB, Wang T, Park YB, Cosgrove DJ, Hong M (2014) Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J Am Chem Soc 136:10399–10409PubMedCrossRefPubMedCentralGoogle Scholar
  68. Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27PubMedCrossRefPubMedCentralGoogle Scholar
  69. Wilson RC, Cooper JB (1994) Characterization of PRP1 and PRP2 from Medicago truncatula. Plant Physiol 105:445–446PubMedPubMedCentralCrossRefGoogle Scholar
  70. Wilson RC, Long F, Maruoka EM, Cooper JB (1994) A new proline-rich early nodulin from Medicago truncatula is highly expressed in nodule meristematic cells. Plant Cell 6:1265–1275PubMedPubMedCentralGoogle Scholar
  71. Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. In: Wang K (ed) Agrobacterium protocols. Humana Press, Totowa, pp 43–54CrossRefGoogle Scholar
  72. Wisniewski J-P, Rathbun EA, Knox JP, Brewin NJ (2000) Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum. Mol Plant–Microbe Interact 13:413–420PubMedCrossRefPubMedCentralGoogle Scholar
  73. Wyatt RE, Nagao RT, Key JL (1992) Patterns of soybean proline-rich protein gene expression. Plant Cell 4:99–110PubMedPubMedCentralGoogle Scholar
  74. Ye Z-H, Song Y-R, Marcus A, Varner JE (1991) Comparative localization of three classes of cell wall proteins. Plant J 1:175–183PubMedCrossRefPubMedCentralGoogle Scholar
  75. Ziemer MA, Mason A, Carlson DM (1982) Cell-free translations of proline-rich protein mRNAs. J Biol Chem 257:11176–11180PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Molecular, Cellular, and Developmental Biology DepartmentUniversity of California at Santa BarbaraSanta BarbaraUSA
  2. 2.Biomolecular Science and Engineering ProgramUniversity of California at Santa BarbaraSanta BarbaraUSA
  3. 3.Biological Sciences DepartmentSanta Rosa Junior CollegeSanta RosaUSA
  4. 4.Biological Sciences DepartmentCañada CollegeRedwood CityUSA
  5. 5.Biology DepartmentUniversität HamburgHamburgGermany

Personalised recommendations