Advertisement

Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum

  • Xinran Chong
  • Jiangshuo Su
  • Fan Wang
  • Haibin Wang
  • Aiping Song
  • Zhiyong Guan
  • Weimin Fang
  • Jiafu Jiang
  • Sumei Chen
  • Fadi Chen
  • Fei ZhangEmail author
Article
  • 42 Downloads

Abstract

Key message

81 SNPs were identified for three inflorescence-related traits, in which 15 were highly favorable. Two dCAPS markers were developed for future MAS breeding, and six candidate genes were predicted.

Abstract

Chrysanthemum is a leading ornamental species worldwide and demonstrates a wealth of morphological variation. Knowledge about the genetic basis of its phenotypic variation for key horticultural traits can contribute to its effective management and genetic improvement. In this study, we conducted a genome-wide association study (GWAS) based on two years of phenotype data and a set of 92,617 single nucleotide polymorphisms (SNPs) using a panel of 107 diverse cut chrysanthemums to dissect the genetic control of three inflorescence-related traits. A total of 81 SNPs were significantly associated with the three inflorescence-related traits (capitulum diameter, number of ray florets and flowering time) in at least one environment, with an individual allele explaining 22.72–38.67% of the phenotypic variation. Fifteen highly favorable alleles were identified for the three target traits by computing the phenotypic effect values for the stable associations detected in 2 year-long trials at each locus. Dosage pyramiding effects of the highly favorable SNP alleles and significant linear correlations between highly favorable allele numbers and corresponding phenotypic performance were observed. Two highly favorable SNP alleles correlating to flowering time and capitulum diameter were converted to derived cleaved amplified polymorphic sequence (dCAPS) markers to facilitate future breeding. Finally, six putative candidate genes were identified that contribute to flowering time and capitulum diameter. These results serve as a foundation for analyzing the genetic mechanisms underlying important horticultural traits and provide valuable insights into molecular marker-assisted selection (MAS) in chrysanthemum breeding programs.

Keywords

Chrysanthemum Genome-wide association study Favorable allele Derived cleaved amplified polymorphic sequence (dCAPS) Candidate gene Marker-assisted selection 

Abbreviations

CD

Capitulum diameter

dCAPS

Derived cleaved amplified polymorphic sequence

FT

Flowering time

GWAS

Genome-wide association study

MAF

Minor allele frequency

MAS

Marker-assisted selection

MLM

Mixed linear model

NRF

Number of ray florets

PCA

Principal component analysis

SLAF

Specific locus amplified fragment

SNP

Single nucleotide polymorphism

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31572152, 31425022).

Author contributions

XC, FC and FZ conceived and designed the project. FC, WF and ZG provided the materials. XC, JS, FW and AS conducted experiments. XC, FZ, JJ and SC analyzed the data and discussed the results. XC and FZ wrote the manuscript. FZ and HW revised the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11103_2019_826_MOESM1_ESM.jpg (1.5 mb)
Fig. S1 The population structure of the 107-entry germplasm panel. (a) The coefficient of variation (CV) value for each K-value, ranging from 1 to 10, and used to determine the true K values of the two groups (K = 2). (b) Population structure analysis. Each entry is represented by a thin vertical bar, and the length of each colored segment in a given vertical bar represents inferred membership in the given number of sub-populations. (c) PCA plots of the three components based on the SNP dataset. (JPG 1568 KB)
11103_2019_826_MOESM2_ESM.jpg (1022 kb)
Fig. S2 Phylogenetic tree of the 107-entry germplasm panel based on 92,617 SNPs. The code by two lower letters represents the entry (JPG 1022 KB)
11103_2019_826_MOESM3_ESM.jpg (137 kb)
Fig. S3 Phenotypic diversity of three quantitative traits for the GWAS of chrysanthemum varieties in two years. The axes of ordinate: Frequency distributions of three inflorescence-related traits of 107-entry germplasm panel. The axes of abscissas: The phenotypic values of the three inflorescence-related traits (CD, NRF and FT). I: 2011 trial; II: 2012 trial (JPG 137 KB)
11103_2019_826_MOESM4_ESM.jpg (69 kb)
Fig. S4 Distribution of pair-wise relative kinship coefficients in the 107-entry germplasm panel (JPG 68 KB)
11103_2019_826_MOESM5_ESM.jpg (438 kb)
Fig. S5 Targeted polymorphisms, restriction sites and sequence information for the 7840-50 dCAPS marker and 7810-165 dCAPS marker. The red letters in brackets are SNP loci. The underlined sequence is the designed primer sequence (JPG 437 KB)
11103_2019_826_MOESM6_ESM.xlsx (18 kb)
Supplementary material Table S1 (XLSX 18 KB)
11103_2019_826_MOESM7_ESM.xlsx (37.2 mb)
Supplementary material Table S2 (XLSX 38069 KB)
11103_2019_826_MOESM8_ESM.xlsx (15 kb)
Supplementary material Table S3 (XLSX 15 KB)
11103_2019_826_MOESM9_ESM.docx (21 kb)
Supplementary material Table S4 (DOCX 21 KB)
11103_2019_826_MOESM10_ESM.docx (23 kb)
Supplementary material Table S5 (DOCX 23 KB)
11103_2019_826_MOESM11_ESM.xlsx (15 kb)
Supplementary material Table S6 (XLSX 15 KB)
11103_2019_826_MOESM12_ESM.docx (18 kb)
Supplementary material Table S7 (DOCX 17 KB)

References

  1. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664CrossRefGoogle Scholar
  2. Bacmolenaar JA, Vreugdenhil D, Granier C, Keurentjes JJB (2015) Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci. J Exp Bot 66:5567–5580CrossRefGoogle Scholar
  3. Bérard A, Paslier MCL, Dardevet M, Exbrayat-Vinson F, Bonnin I, Cenci A, Haudry A, Brunel D, Ravel C (2009) High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). Plant Biotechnol J 7:364–374CrossRefGoogle Scholar
  4. Biber A, Kaufmann H, Linde M, Spiller M, Terefe D, Debener T (2010) Molecular markers from a BAC contig spanning the Rdr1 locus: a tool for marker-assisted selection in roses. Theor Appl Genet 120:765–773CrossRefGoogle Scholar
  5. Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692CrossRefGoogle Scholar
  6. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefGoogle Scholar
  7. Cameron M, Williams HE, Cannane A (2004) Improved gapped alignment in BLAST. IEEE ACM Trans Comput Bioinform 1:116–129CrossRefGoogle Scholar
  8. Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966CrossRefGoogle Scholar
  9. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025CrossRefGoogle Scholar
  10. Chong X, Zhang F, Wu Y, Yang X, Zhao N, Wang H, Guan Z, Fang W, Chen F (2016) A SNP-enabled assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in chrysanthemum. Genome Biol Evol 8:3661–3671Google Scholar
  11. Dang X, Liu E, Liang Y, Liu Q, Breria CM, Hong D (2016) QTL detection and elite alleles mining for stigma traits in Oryza sativa by association mapping. Front Plant Sci 7:1188CrossRefGoogle Scholar
  12. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454CrossRefGoogle Scholar
  13. Di H, Liu X, Wang Q, Weng J, Zhang L, Li X, Wang Z (2015) Development of SNP-based dCAPS markers linked to major head smut resistance quantitative trait locus qHS2.09 in maize. Euphytica 202:69–79CrossRefGoogle Scholar
  14. Duarte J, Rivière N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Hénaut I, Martinant J, Pichon J, Pilet-Nayel M, Boutet G (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genom 15:126CrossRefGoogle Scholar
  15. Fu X, Su J, Yu K, Cai Y, Zhang F, Chen S, Fang W, Chen F, Guan Z (2018) Genetic variation and association mapping of aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Euphytica 214:21CrossRefGoogle Scholar
  16. Gao M, Parkin I, Lydiate D, Hannoufa A (2004) An auxin-responsive SCARECROW-like transcriptional activator interacts with histone deacetylase. Plant Mol Biol 55:417–431CrossRefGoogle Scholar
  17. Gao J, Sun J, Cao P, Ren L, Liu C, Chen S, Chen F, Jiang J (2016) Variation in tissue Na+ content and the activity of SOS1 genes among two species and two related genera of Chrysanthemum. BMC Plant Biol 16:98CrossRefGoogle Scholar
  18. Geraldes A, Difazio SP, Slavov GT, Ranjan P, Muchero W, Hannemann J, Gunter LE, Wymore AM, Grassa CJ, Farzaneh N (2013) A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species. Mol Ecol Resour 13:306–323CrossRefGoogle Scholar
  19. Han Y, Zhao X, Liu D, Li Y, Lightfoot DA, Yang Z, Zhao L, Zhou G, Wang Z, Huang L (2015) Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol 209:871–884CrossRefGoogle Scholar
  20. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  21. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967CrossRefGoogle Scholar
  22. Jin J, Jin Y, Lee J, Miura K, Yoo CY, Kim WY, Van Oosten M, Hyun Y, Somers DE, Lee I (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J 53:530–540CrossRefGoogle Scholar
  23. Kan G, Zhang W, Yang W, Ma D, Zhang D, Hao D, Hu Z, Yu D (2015) Association mapping of soybean seed germination under salt stress. Mol Genet Genomics 290:2147–2162CrossRefGoogle Scholar
  24. Karaagac E, Vargas AM, Andrés MTD, Carreño I, Ibáñez J, Carreño J, Martínez-Zapater JM, Cabezas JA (2012) Marker assisted selection for seedlessness in table grape breeding. Tree Genet Genomes 8:1003–1015CrossRefGoogle Scholar
  25. Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320CrossRefGoogle Scholar
  26. Klie M, Menz I, Linde M, Debener T (2016) Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum. Mol Genet Genomics 291:957–969CrossRefGoogle Scholar
  27. Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79–90CrossRefGoogle Scholar
  28. Lee GA, Koh HJ, Chung HK, Dixit A, Chung JW, Ma KH, Lee SY, Lee JR, Lee GS, Gwag JG (2009) Development of SNP-based CAPS and dCAPS markers in eight different genes involved in starch biosynthesis in rice. Mol Breed 24:93–101CrossRefGoogle Scholar
  29. Li G, Qian W, Zhang S, Zhang S, Li F, Zhang H, Wu J, Wang X, Sun R (2016a) Development of gene-based markers for the Turnip mosaic virus resistance gene retr02 in Brassica rapa. Plant Breed 135:466–470CrossRefGoogle Scholar
  30. Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016b) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol Genet Genomics 291:1117–1125CrossRefGoogle Scholar
  31. Lin X, Niu D, Hu Z, Kim DH, Jin YH, Cai B, Liu P, Miura K, Yun DJ, Kim WY (2016) An Arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity. PLoS Genet 12:e1006016CrossRefGoogle Scholar
  32. Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y (2016) A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet 129:1203–1215CrossRefGoogle Scholar
  33. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria Officinalis (Rubiaceae). Am J Bot 82:1420–1425CrossRefGoogle Scholar
  34. Long AD, Langley CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 9:720–731Google Scholar
  35. Mallappa C, Yadav V, Negi P, Chattopadhyay S (2006) A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J Biol Chem 281:22190–22199CrossRefGoogle Scholar
  36. Mallappa C, Singh A, Ram H, Chattopadhyay S (2008) GBF1, a transcription factor of blue light signaling in Arabidopsis, is degraded in the dark by a proteasome-mediated pathway independent of COP1 and SPA1. J Biol Chem 283:35772–35782CrossRefGoogle Scholar
  37. Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326CrossRefGoogle Scholar
  38. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392CrossRefGoogle Scholar
  39. Nocker SV, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022CrossRefGoogle Scholar
  40. Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci 94:7076–7081CrossRefGoogle Scholar
  41. Peng H, Zhang F, Jiang J, Chen S, Fang W, Guan Z, Chen F (2015) Identification of quantitative trait loci for branching traits of spray cut chrysanthemum. Euphytica 202:385–392CrossRefGoogle Scholar
  42. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400CrossRefGoogle Scholar
  43. Sacco A, Di Matteo A, Lombardi N, Trotta N, Punzo B, Mari A, Barone A (2013) Quantitative trait loci pyramiding for fruit quality traits in tomato. Mol Breed 31:217–222CrossRefGoogle Scholar
  44. Schein M, Yang Z, Mitchellolds T, Schmid KJ (2004) Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species. Mol Biol Evol 21:659–669CrossRefGoogle Scholar
  45. Shi X, Li Y, Yu B, Guo Y, Wang J, Qiu L (2015) Development and utilization of CAPS/dCAPS markers based on the SNPs lying in soybean cyst nematode resistant genes Rhg4. Acta Agro Sin 41:1463CrossRefGoogle Scholar
  46. Shu Y, Li Y, Zhu Z, Bai X, Cai H, Ji W, Guo D, Zhu Y (2011) SNPs discovery and CAPS marker conversion in soybean. Mol Biol Rep 38:1841–1846CrossRefGoogle Scholar
  47. Singh A, Ram H, Abbas N, Chattopadhyay S (2012) Molecular interactions of GBF1 with HY5 and HYH proteins during light-mediated seedling development in Arabidopsis thaliana. J Biol Chem 287:25995–26009CrossRefGoogle Scholar
  48. Soltani A, MafiMoghaddam S, Walter K, Restrepo-Montoya D, Mamidi S, Schroder S, Lee R, McClean P, Osorno J (2017) Genetic architecture of flooding tolerance in the dry bean middle-American diversity panel. Front Plant Sci 8:1183CrossRefGoogle Scholar
  49. Su J, Fan S, Li L, Wei H, Wang C, Wang H, Song M, Zhang C, Gu L, Zhao S, Mao G, Wang C, Pang C, Yu S (2016a) Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in chinese upland cotton. Front Plant Sci 7:1576Google Scholar
  50. Su J, Zhang F, Li P, Guan Z, Fang W, Chen F (2016b) Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. Planta 244:1241–1252CrossRefGoogle Scholar
  51. Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700CrossRefGoogle Scholar
  52. Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L (2017) Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15:982–996CrossRefGoogle Scholar
  53. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  54. Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346CrossRefGoogle Scholar
  55. Upadhyaya HD, Wang YH, Gowda CL, Sharma S (2013) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet 126:2003–2015CrossRefGoogle Scholar
  56. van Geest G, Bourke PM, Voorrips RE, Marasek-Ciolakowska A, Liao Y, Post A, van Meeteren U, Visser RGF, Maliepaard C, Arens P (2017a) An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theor Appl Genet 130:2527–2541CrossRefGoogle Scholar
  57. van Geest G, Voorrips RE, Esselink D, Post A, Visser RGF, Arens P (2017b) Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array. BMC Genom 18:585CrossRefGoogle Scholar
  58. Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462CrossRefGoogle Scholar
  59. Wang Y, Zhang W, Song L, Zou J, Su Z, Wu W (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211CrossRefGoogle Scholar
  60. Wang C, Zhang F, Guan Z, Chen S, Jiang J, Fang W, Chen F (2014) Inheritance and molecular markers for aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Sci Hortic 180:220–226CrossRefGoogle Scholar
  61. Wang Y, Liu W, Xu L, Wang Y, Chen Y, Luo X, Tang M, Liu L (2017) Development of SNP markers based on transcriptome sequences and their application in germplasm identification in radish (Raphanus sativus L.). Mol Breed 37:26CrossRefGoogle Scholar
  62. Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2016) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23:43–52Google Scholar
  63. Yanagisawa T, Kiribuchi-Otobe C, Hirano H, Suzuki Y, Fujita M (2003) Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker. Theor Appl Genet 107:84–88CrossRefGoogle Scholar
  64. Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431CrossRefGoogle Scholar
  65. Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191CrossRefGoogle Scholar
  66. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208CrossRefGoogle Scholar
  67. Zhang F, Chen S, Chen F, Fang W, Li F (2010a) A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci Hortic 125:422–428CrossRefGoogle Scholar
  68. Zhang Z, Ersoz E, Lai C, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM (2010b) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360CrossRefGoogle Scholar
  69. Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2011a) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breed 27:11–23CrossRefGoogle Scholar
  70. Zhang F, Chen S, Chen F, Fang W, Deng Y, Chang Q, Liu P (2011b) Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium). Euphytica 177:15–24CrossRefGoogle Scholar
  71. Zhang F, Jiang J, Chen S, Chen F, Fang W (2012a) Detection of quantitative trait loci for leaf traits in chrysanthemum. J Hortic Sci Biotechnol 87:613–618CrossRefGoogle Scholar
  72. Zhang F, Jiang J, Chen S, Chen F, Fang W (2012b) Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Mol Breed 30:1027–1036CrossRefGoogle Scholar
  73. Zhang F, Chen S, Jiang J, Guan Z, Fang W, Chen F (2013) Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum (Chrysanthemum morifolium). PLoS ONE 8:e83023CrossRefGoogle Scholar
  74. Zhang B, Li W, Chang X, Li R, Jing R (2014) Effects of favorable alleles for water-soluble carbohydrates at grain filling on grain weight under drought and heat stresses in wheat. PLoS ONE 9:e102917CrossRefGoogle Scholar
  75. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467CrossRefGoogle Scholar
  76. Zhou Q, Zhou C, Zheng W, Mason AS, Fan S, Wu C, Fu D, Huang Y (2017) Genome-wide SNP markers based on SLAF-seq uncover breeding traces in rapeseed (Brassica napus L.). Front Plant Sci 8:648CrossRefGoogle Scholar
  77. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar
  78. Zhu W, Xu J, Li G, Duan S, Liu J, Bian C, Pang W, Jong W, Jin L (2015) Development and verification of a CAPS marker linked to tuber shape gene in potato. Acta Agron Sin 41:1529CrossRefGoogle Scholar
  79. Zini E, Raffeiner M, Gaspero GD, Eibach R, Grando MS, Letschka T (2015) Applying a defined set of molecular markers to improve selection of resistant grapevine accessions. Acta Hortic 1082:73–78CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xinran Chong
    • 1
  • Jiangshuo Su
    • 1
  • Fan Wang
    • 1
  • Haibin Wang
    • 1
  • Aiping Song
    • 1
  • Zhiyong Guan
    • 1
  • Weimin Fang
    • 1
  • Jiafu Jiang
    • 1
  • Sumei Chen
    • 1
  • Fadi Chen
    • 1
  • Fei Zhang
    • 1
    Email author
  1. 1.College of HorticultureNanjing Agricultural UniversityNanjingChina

Personalised recommendations