Advertisement

Plant Molecular Biology

, Volume 98, Issue 3, pp 275–287 | Cite as

Identification of Auxin Activity Like 1, a chemical with weak functions in auxin signaling pathway

  • Wenbo Li
  • Haimin Li
  • Peng Xu
  • Zhi Xie
  • Yajin Ye
  • Lingting Li
  • Deqiang Li
  • Yijing Zhang
  • Laigeng Li
  • Yang Zhao
Article

Abstract

Key message

A new synthetic auxin AAL1 with new structure was identified. Different from known auxins, it has weak effects. By AAL1, we found specific amino acids could restore the effects of auxin with similar structure.

Abstract

Auxin, one of the most important phytohormones, plays crucial roles in plant growth, development and environmental response. Although many critical regulators have been identified in auxin signaling pathway, some factors, especially those with weak fine-tuning roles, are still yet to be discovered. Through chemical genetic screenings, we identified a small molecule, Auxin Activity Like 1 (AAL1), which can effectively inhibit dark-grown Arabidopsis thaliana seedlings. Genetic screening identified AAL1 resistant mutants are also hyposensitive to indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). AAL1 resistant mutants such as shy2-3c and ecr1-2 are well characterized as mutants in auxin signaling pathway. Genetic studies showed that AAL1 functions through auxin receptor Transport Inhibitor Response1 (TIR1) and its functions depend on auxin influx and efflux carriers. Compared with known auxins, AAL1 exhibits relatively weak effects on plant growth, with 20 µM and 50 µM IC50 (half growth inhibition chemical concentration) in root and hypocotyl growth respectively. Interestingly, we found the inhibitory effects of AAL1 and IAA could be partially restored by tyrosine and tryptophan respectively, suggesting some amino acids can also affect auxin signaling pathway in a moderate manner. Taken together, our results demonstrate that AAL1 acts through auxin signaling pathway, and AAL1, as a weak auxin activity analog, provides us a tool to study weak genetic interactions in auxin pathway.

Keywords

Arabidopsis Chemical genetics AAL1 Auxin Amino acid 

Notes

Acknowledgements

We thank Dr. Xiaoya Chen (SIPPE) and Dr. Yongfei Wang for providing the Col-0 EMS mutant M2 seeds. We also thank Dr. Zuhua He (SIPPE), Hai Huang (SIPPE) and Lin Xu (SIPPE) for providing auxin-associated mutants. This work was supported by grants from the National Natural Science Foundation of China (31171293 and 31371361) and the One Hundred Talents grant of the Chinese Academy of Sciences to Yang Zhao, and the National Natural Science Foundation of China (31630014) and the Strategic Priority Program of Chinese Academy of Sciences (XDB27020104) to Laigeng Li.

Author Contributions

YZ and WBL planned and designed the research. WBL and HML performed experiments, conducted fieldwork, analyzed data and wrote the manuscript. LTL helped to perform experiments. YZ, LGL and YJZ modified the manuscript. PX, DQL, YJY and ZX helped to modify the manuscript. YJZ and LGL provided platform for some experiments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11103_2018_779_MOESM1_ESM.doc (67 kb)
Supplementary material 1 (DOC 67 KB)
11103_2018_779_MOESM2_ESM.tif (5.7 mb)
Supplementary material 2 (TIF 5882 KB)
11103_2018_779_MOESM3_ESM.tif (6.2 mb)
Supplementary material 3 (TIF 6313 KB)
11103_2018_779_MOESM4_ESM.tif (8 mb)
Supplementary material 4 (TIF 8158 KB)
11103_2018_779_MOESM5_ESM.tif (1.7 mb)
Supplementary material 5 (TIF 1777 KB)
11103_2018_779_MOESM6_ESM.tif (9.8 mb)
Supplementary material 6 (TIF 10076 KB)
11103_2018_779_MOESM7_ESM.tif (4.4 mb)
Supplementary material 7 (TIF 4545 KB)
11103_2018_779_MOESM8_ESM.tif (9.6 mb)
Supplementary material 8 (TIF 9784 KB)
11103_2018_779_MOESM9_ESM.tif (1.1 mb)
Supplementary material 9 (TIF 1112 KB)
11103_2018_779_MOESM10_ESM.tif (2.5 mb)
Supplementary material 10 (TIF 2602 KB)
11103_2018_779_MOESM11_ESM.tif (4.3 mb)
Supplementary material 11 (TIF 4352 KB)
11103_2018_779_MOESM12_ESM.tif (6.2 mb)
Supplementary material 12 (TIF 6315 KB)
11103_2018_779_MOESM13_ESM.tif (409 kb)
Supplementary material 13 (TIF 408 KB)
11103_2018_779_MOESM14_ESM.tif (6.5 mb)
Supplementary material 14 (TIF 6624 KB)
11103_2018_779_MOESM15_ESM.tif (1.1 mb)
Supplementary material 15 (TIF 1150 KB)
11103_2018_779_MOESM16_ESM.xlsx (10 kb)
Supplementary material 16 (XLS 10 KB)

References

  1. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 273(5277):948–950CrossRefGoogle Scholar
  2. Cao M, Liu X, Zhang Y, Xue X, Zhou XE, Melcher K, Gao P, Wang F, Zeng L, Zhao Y, Zhao Y, Deng P, Zhong D, Zhu JK, Xu HE, Xu Y (2013) An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23(8):1043–1054CrossRefGoogle Scholar
  3. Chen LS, Ortiz-Lopez A, Jung A, Bush DR (2001) ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Plant Physiol 125(4):1813–1820CrossRefGoogle Scholar
  4. Cheng YF, Dai XH, Zhao YD (2004) AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis. Plant Physiol 135(2):1020–1026CrossRefGoogle Scholar
  5. Cheng YF, Dai XH, Zhao YD (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20(13):1790–1799CrossRefGoogle Scholar
  6. Dai XH, Hayashi K, Nozaki H, Cheng YF, Zhao YD (2005) Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. Proc Natl Acad Sci USA 102(8):3129–3134CrossRefGoogle Scholar
  7. Del Pozo JC, Dharmasiri S, Hellmann H, Walker L, Gray WM, Estelle M (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin response. Plant Cell 14(2):421–433CrossRefGoogle Scholar
  8. Enders TA, Strader LC (2015) Auxin activity: past, present, and future. Am J Bot 102(2):180–196CrossRefGoogle Scholar
  9. Estelle M (1998) Polar auxin transport: new support for an old model. Plant Cell 10(11):1775–1778CrossRefGoogle Scholar
  10. Grossmann K (2007) Auxin herbicide action: lifting the veil step by step. Plant Signal Behav 2(5):421–423CrossRefGoogle Scholar
  11. Hosek P, Kubes M, Lanková M, Dobrev PI, Klíma P, Kohoutová M, Petrásek J, Hoyerová K, Jirina M, Zazímalová E (2012) Auxin transport at cellular level: new insights supported by mathematical modelling. J Exp Bot 63(10):3815–3827CrossRefGoogle Scholar
  12. Hou X, Li L, Peng Z, Wei B, Tang S, Ding M, Liu J, Zhang F, Zhao Y, Gu H, Qu LJ (2010) A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis. Plant J 63(5):880–888CrossRefGoogle Scholar
  13. Katz E, Nisani S, Yadav BS, Woldemariam MG, Shai B, Obolski U, Ehrlich M, Shani E, Jander G, Chamovitz DA (2015) The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana. Plant J 82(4):547–555CrossRefGoogle Scholar
  14. Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112(9):1655–1665CrossRefGoogle Scholar
  15. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446–451CrossRefGoogle Scholar
  16. Lavy M, Prigge MJ, Tao S, Shain S, Kuo A, Kirchsteiger K, Estelle M (2016) Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. Elife 5:e13325CrossRefGoogle Scholar
  17. Leyser HMO, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993) Arabidopsis auxin-resistance gene-Axr1 encodes a protein related to Ubiquitin-activating enzyme-E1. Nature 364(6433):161–164CrossRefGoogle Scholar
  18. Li SB, Xie ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:47PubMedPubMedCentralGoogle Scholar
  19. Li W, Lacey RF, Ye Y et al (2017) Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1. PLoS Genet 13(4):e1006703CrossRefGoogle Scholar
  20. Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci USA 110(38):15485–15490CrossRefGoogle Scholar
  21. Liu Y, Xu M, Liang N, Zheng Y, Yu Q, Wu S (2017) Symplastic communication spatially directs local auxin biosynthesis to maintain root stem cell niche in Arabidopsis. Proc Natl Acad Sci USA 114(15):4005–4010CrossRefGoogle Scholar
  22. Ma Q, Robert S (2014) Auxin biology revealed by small molecules. Physiol Plant 151(1):25–42CrossRefGoogle Scholar
  23. Mageroy MH, Parent G, Germanos G, Giguère I, Delvas N, Maaroufi H, Bauce É, Bohlmann J, Mackay JJ (2015) Expression of the beta-glucosidase gene Pg beta glu-1 underpins natural resistance of white spruce against spruce budworm. Plant J 81(1):68–80CrossRefGoogle Scholar
  24. Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. Embo J 18(8):2066–2073CrossRefGoogle Scholar
  25. McCourt P, Desveaux D (2010) Plant chemical genetics. New Phytol 185(1):15–26CrossRefGoogle Scholar
  26. Meesters C, Mönig T, Oeljeklaus J, Krahn D, Westfall CS, Hause B, Jez JM, Kaiser M, Kombrink E (2014) A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat Chem Biol 10:830–836CrossRefGoogle Scholar
  27. Muday GK, Murphy AS (2002) An emerging model of auxin transport regulation. Plant Cell 14(2):293–299CrossRefGoogle Scholar
  28. Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123(2):563–574CrossRefGoogle Scholar
  29. Narukawa-Nara M, Nakamura A, Kikuzato K, Kakei Y, Sato A, Mitani Y, Yamasaki-Kokudo Y, Ishii T, Hayashi K, Asami T, Ogura T, Yoshida S, Fujioka S, Kamakura T, Kawatsu T, Tachikawa M, Soeno K, Shimada Y (2016) Aminooxy-naphthylpropionic acid and its derivatives are inhibitors of auxin biosynthesis targeting l-tryptophan aminotransferase: structure-activity relationships. Plant J 87(3):245–257CrossRefGoogle Scholar
  30. Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant cell 17(2):444–463CrossRefGoogle Scholar
  31. Ouellet F, Overvoorde PJ, Theologis A (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13(4):829–841CrossRefGoogle Scholar
  32. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068–1071PubMedPubMedCentralGoogle Scholar
  33. Peer WA, Blakeslee JJ, Yang HB, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4(3):487–504CrossRefGoogle Scholar
  34. Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6(9):420–425CrossRefGoogle Scholar
  35. Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279(5355):1371–1373CrossRefGoogle Scholar
  36. Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12(2):198–207CrossRefGoogle Scholar
  37. Simon S, Kubes M, Baster P, Robert S, Dobrev PI, Friml J, Petrášek J, Zažímalová E (2013) Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. New Phytol 200(4):1034–1048CrossRefGoogle Scholar
  38. Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol 51:524–536CrossRefGoogle Scholar
  39. Spyropoulos IC, Liakopoulos TD, Bagos PG, Hamodrakas SJ (2004) TMRPres2D: high quality visual representation of transmembrane protein models. Bioinformatics 20(17):3258–3260CrossRefGoogle Scholar
  40. Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150(3):1310–1321CrossRefGoogle Scholar
  41. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616–627CrossRefGoogle Scholar
  42. Strader LC, Beisner ER, Bartel B (2009) Silver ions increase auxin efflux independently of effects on ethylene response. The Plant cell 21:3585–3590CrossRefGoogle Scholar
  43. Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, Tsurumi S, Moore I, Napier R, Kerr ID, Bennett MJ (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16(11):3069–3083CrossRefGoogle Scholar
  44. Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10(8):946–954CrossRefGoogle Scholar
  45. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 UBIQUITIN ligase. Nature 446(7136):640–645CrossRefGoogle Scholar
  46. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7(11):847–859CrossRefGoogle Scholar
  47. Thomann A, Lechner E, Hansen M, Dumbliauskas E, Parmentier Y, Kieber J, Scheres B, Genschik P (2009) Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and -independent mechanisms. PLoS Genet 5(1):e1000328CrossRefGoogle Scholar
  48. Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126(4):711–721PubMedGoogle Scholar
  49. Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14(2):301–319CrossRefGoogle Scholar
  50. Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850CrossRefGoogle Scholar
  51. Villalobos LIaC, Lee S, De Oliveira C et al (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8(5):477–485CrossRefGoogle Scholar
  52. Walsh TA, Neal R, Merlo AO, Honma M, Hicks GR, Wolff K, Matsumura W, Davies JP (2006) Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiol 142(2):542–545CrossRefGoogle Scholar
  53. Woodward AW, Ratzel SE, Woodward EE, Shamoo Y, Bartel B (2007) Mutation of E1-conjugating enzyme-related1 decreases related to Ubiquitin conjugation and alters auxin response and development. Plant Physiol 144(2):976–987CrossRefGoogle Scholar
  54. Yang YD, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16(11):1123–1127CrossRefGoogle Scholar
  55. Ye Y, Gong Z, Lu X, Miao D, Shi J, Lu J, Zhao Y (2016) Germostatin resistance locus 1 encodes a PHD finger protein involved in auxin-mediated seed dormancy and germination. Plant J 85(1):3–15CrossRefGoogle Scholar
  56. Ye Y, Zhou L, Liu X et al (2017) A novel chemical inhibitor of ABA signaling targets all ABA receptors. Plant Physiol 173(4):2356–2369CrossRefGoogle Scholar
  57. Yokawa K, Kaquenishi T, Baluska F (2016) UV-B induced generation of reactive oxygen species promotes formation of BFA-induced compartments in cells of Arabidopsis root apices. Front Plant Sci 6:1162CrossRefGoogle Scholar
  58. Zhao YD (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64CrossRefGoogle Scholar
  59. Zhao YD, Dai XH, Blackwell HE, Schreiber SL, Chory J (2003) SIR1, an upstream component in auxin signaling pathway identified by chemical genetics. Science 301(5636):1107–1110CrossRefGoogle Scholar
  60. Zhao Y, Chow TF, Puckrin RS et al (2007) Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated. Nat Chem Biol 3(11):716–721CrossRefGoogle Scholar
  61. Zolman BK, Bartel B (2004) An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function. Proc Natl Acad Sci USA 101(6):1786–1791CrossRefGoogle Scholar
  62. Zolman BK, Yoder A, Bartel B (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156(3):1323–1337PubMedPubMedCentralGoogle Scholar
  63. Zolman BK, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 180(1):237–251CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Wenbo Li
    • 1
    • 2
  • Haimin Li
    • 1
    • 2
  • Peng Xu
    • 1
    • 2
  • Zhi Xie
    • 1
    • 2
  • Yajin Ye
    • 2
    • 3
  • Lingting Li
    • 2
    • 3
  • Deqiang Li
    • 1
    • 2
  • Yijing Zhang
    • 1
  • Laigeng Li
    • 1
  • Yang Zhao
    • 3
    • 4
  1. 1.National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesShanghaiChina
  3. 3.Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  4. 4.Faculty of Life Science and TechnologyKunming University of Science and TechnologyYunnanChina

Personalised recommendations