Skip to main content

Advertisement

Log in

Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato

  • Original Paper
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Resistance to antibiotics mediated by selectable marker genes remains a powerful selection tool for transgenic event production. However, regulatory agencies and consumer concerns favor these to be eliminated from food crops. Several excision systems exist but none have been optimized or shown to be functional for clonally propagated crops. The excision of the nptII gene conferring resistance to kanamycin has been achieved here using a gene construct based on a heat-inducible cre gene producing a recombinase that eliminates cre and nptII genes flanked by two loxP sites. First-generation regenerants with the Cre-loxP system were obtained by selection on kanamycin media. Following a heat treatment, second generation regenerants were screened for excision by PCR using nptII, cre, and T-DNA borders primers. Excision efficiency appeared to be at 4.7% depending on the heat treatment. The footprint of the excision was shown by sequencing between T-DNA borders to correspond to a perfect recombination event. Selectable marker-free sprouts were also obtained from tubers of transgenic events when submitted to similar heat treatment at 4% frequency. Spontaneous excision was not observed out of 196 regenerants from untreated transgenic explants. Biosafety concerns are minimized because the expression of cre gene driven by the hsp70 promoter of Drosophila melanogaster was remarkably low even under heat activation and no functional loxP site were found in published Solanum sequence database. A new plant transformation vector pCIP54/55 was developed including a multiple cloning site and the self-excision system which should be a useful tool not only for marker genes in potato but for any gene or sequence removal in any plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CaMV 35S:

Cauliflower mosaic virus 35S

cDNA:

Complementary DNA

cox:

Cytochrome oxidase

Ct:

Cycle threshold

CTAB:

Cetyl trimethyl ammonium bromide

EDTA:

Ethylenediaminetetraacetic acid

hsp70:

Heat-shock protein 70

LB:

Luria-Bertani

loxP:

Locus of X-ing over

MCS:

Multiple cloning site

MS:

Murashige and Skoog

M-MuLV:

Moloney murine leukemia virus

NaCl:

Sodium clhoride

nptII:

Neomycin phosphotransferase II

NOS:

Nopaline syntase

T-DNA:

Transferred DNA

TBE:

Tris-borate-ethylenediaminetetraacetic acid

pCIP:

Plasmid International Potato Center

PCR:

Polymerase chain reaction

RT-qPCR:

Real time-quantitative polymerase chain reaction

References

  • Bertolla F, Kay E, Simonet P (2000) Potential dissemination of antibiotic resistance genes from transgenic plants to microorganisms. Infect Control and Hosp Epidemiol 21:390–393

    Article  CAS  Google Scholar 

  • Coppoolse ER, de Vroomen MJ, Roelofs D, Smit J, van Gennip F, Hersmus BJ, Nijkamp HJ, van Haaren MJ (2003) Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol Biol 51:263–279

    Article  PubMed  CAS  Google Scholar 

  • Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 27:171–178

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka E, Key JL, Gurley WB (1989) Regulatory domains of the Gmhsp17.5-E heat-shock promoter of soybean. Mol Cell Biol 9:3457–3463

    PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  ADS  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Feder ME (1996) Ecological and evolutionary physiology of stress proteins and the stress response: the Drosophila melanogaster model. In: Johnston IA, Bennett AF (eds) Animals and temperature: phenotypic and evolutionary adaptation. Cambridge University Press, pp79–102

  • Feder ME, Krebs RA (1997) Ecological and evolutionary physiology of heat shock proteins and the stress response in Drosophila: complementary insights from genetic engineering and natural variation. EXS 83:155–173

    PubMed  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BA (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    PubMed  CAS  Google Scholar 

  • Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–80

    Article  PubMed  CAS  Google Scholar 

  • Hartung M, Kisters-Woike B (1998) Cre mutants with altered DNA binding properties. J Biol Chem 273:22884–22891

    Google Scholar 

  • Hennegan KP, Danna KJ (1998) pBIN20: an improved binary vector for Agrobacterium-mediated transformation. Plant Mol Biol Rep 16:129–131

    Article  CAS  Google Scholar 

  • Heeres P, Schippers-Rozenboom M, Jacobsen E, Visser RGF (2002) Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variability. Euphytica 124:13–22

    Article  CAS  Google Scholar 

  • Hoa TT, Bong BB, Huq E, Hodges TK (2002) Cre/ lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hoess R, Abremski K (1990) The Cre-lox recombination system. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology vol. 4. Springer-Verlag, Berlin, Germany, pp99–109

    Google Scholar 

  • Hoff T, Schnorr KM, Mundy J (2001) A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol 45:41–49

    Article  PubMed  CAS  Google Scholar 

  • Kopertekh L, Juttner G, Schiemann J (2004) PVX-Cre-mediated marker gene elimination from transgenic plants. Plant Mol Biol 55:491–500

    Article  PubMed  CAS  Google Scholar 

  • Malik VS, Saroha MK (1999) Marker gene controversy in transgenic plants. J Plant Biochem Biotechnol 8:1–13

    Google Scholar 

  • Petersen RB, Lindquist S (1989) Regulation of HSP70 synthesis by messenger RNA degradation. Cell Regul 1:135–149

    PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acid Res 30:1–10

    Article  Google Scholar 

  • Rieping M, Schoffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat-shock genes in transgenic tobacco. Mol Gen Genet 231:226–232

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fristh EF, Maniatis T (2001) Molecular cloning: a laboratory manual. (3rd edn) Cold Spring Harbor Press, New York

    Google Scholar 

  • Schmülling T, Beinsberger S, De Greef J, Schell J, Van Onckelen H, Spena A (1989) Construction of a heat-inducible chimeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett 249:401–406

    Article  Google Scholar 

  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology (NY) 8: 217–221

    Article  CAS  Google Scholar 

  • Smalla, K, Borin, S, Heuer, H, Gebhard, F, van Elsas, JD, and Nielsen, K (2000) Horizontal transfer of antibiotic resistance genes from transgenic plants to bacteria – are there new data to debate? Proceedings of the 6th international symposium on the biosafety of genetically modified organisms.Saskatoon, Canada, 146–154 July 2000

  • Spena A, Haun R, Ziervogel U, Saedle H, Schell J (1985) Construction of a heat-inducible gene for plants: Demostration of heat-inducible activity of the Drosophila hsp70 promoter in plants. EMBO J 4:2739–2743

    PubMed  CAS  Google Scholar 

  • Srivastava V, Ow DW (2003) Rare instances of cre-mediated deletion product maintained in transgenic wheat. Plant Mol Biol 52:661–668

    Article  PubMed  CAS  Google Scholar 

  • Sternberg N, Hamilton D, Hoess R (1981) Bacteriophage P1 site-specific recombination. II. Recombination between loxP and the bacterial chromosome. J Mol Biol 150:487–507

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA (2001) Horizontal transfer of DNA from GM crops to bacteria and to mammalian cells. J Food Sci 66:188–193

    Article  CAS  Google Scholar 

  • Thomson G, Rucker B, Piedrahita J (2003) Mutational analysis of loxP sites for efficient cre-mediated insertion into genomic DNA. Genesis 36:162–167

    Article  PubMed  CAS  Google Scholar 

  • Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 22:47–54

    Article  Google Scholar 

  • Topfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15:5890

    PubMed  CAS  Google Scholar 

  • Van den Eede G, Aarts H, Buhk H-J, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, van der Vossen J, von Wright A, Wackernagel W, Wilcks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Toxicol 42:1127–1156

    Article  PubMed  Google Scholar 

  • Walden R, Reiss B, Koncz C, Schell J (1997) The impact of Ti-plasmid-derived gene vectors on the study of mechanism of action of phytohormones. Annu Rev Phytopathol 35:46–66

    Article  Google Scholar 

  • Wallrath LL, Lu Q, Granok H, Elgin SCR (1994) Architectural variations of inducible eukaryotic promoters: preset␣and remodeling chromatin structures. Bioessays 16: 165–170

    Article  PubMed  CAS  Google Scholar 

  • Weller SA, Elphinstone JG, Smith NC, Boonham N, Stead DE (2000) Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl Environ Microbiol 66:2853–2858

    Article  PubMed  CAS  Google Scholar 

  • Wulff EG, Torres S, Gonzales Vigil E (2002) Protocol for DNA extraction from potato tubers. Plant Mol Biol Rep 20:187a–187e

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 Phage Cloning Vectors and Host Strains: Nucleotide Sequences of the M13 mp18 and pUC19 Vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. B. Kisters-Woike from Institute of Genetics of the University of Cologne, Germany who provide the plasmid pET11a-cre-wt containing the cre recombinase gene, to Dr. Th. Schmülling from the University of Tuebingen, Germany who provide the plasmid pHSIPT containing the hsp70 promoter of Drosophila melanogaster, and to Dr. P.J.M. van den Elzen at Mogen Intl., Leiden, The Netherlands for providing the plasmid pMOG800. This research was partially supported by a grant from the Rockefeller Foundation, Food security program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ghislain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuellar, W., Gaudin, A., Solórzano, D. et al. Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 62, 71–82 (2006). https://doi.org/10.1007/s11103-006-9004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9004-3

Keywords

Navigation