Advertisement

Pituitary

, Volume 22, Issue 5, pp 520–531 | Cite as

Predictive modeling for pituitary adenomas: single center experience in 501 consecutive patients

  • A. L. PappyII
  • A. Savinkina
  • C. Bicknese
  • S. Neill
  • N. M. Oyesiku
  • A. G. IoachimescuEmail author
Article

Abstract

Background

Personalized postoperative management of patients with pituitary adenomas requires an early risk stratification system.

Methods

We reviewed 501 cases operated between 10/27/2011 and 5/5/2016 by a single neurosurgeon. We determined biochemical remission and tumor resection at 3 months, and biochemical recurrence, tumor recurrence, radiation and reoperation during follow-up. We considered age, gender, tumor diameter, cavernous sinus invasion (CSI) by MRI, diagnostic category (clinical, biochemical and immunohistochemical), and proliferation markers in a Cox proportional hazards model. We built predictive models with the significant parameters and used Kaplan–Meier survival curves for time-dependent analyses.

Results

The 501 cases comprised 141 functional and 360 nonfunctional adenomas. Tumor diameter, CSI, and ki-67 index predicted long-term events. Model 1 (CSI, diameter ≥ 2.9 cm and ki-67 > 3%) identified 18 (3.6%) adenomas and predicted persistent hypersecretory syndrome and residual tumor with 98.7% specificity (OR 8.6; CI 3.0–24.7). Model 2 (ki-67 > 3% and CSI) identified 48 (9.6%) adenomas and had 93.1% specificity (OR 3.3; CI 1.8–6.0). Model 3 (ki-67 > 3%, mitoses and p53, former “atypical” adenoma) identified 26 (5.2%) adenomas and had 96.0% specificity (OR 2.3; CI 1.0–5.0). Model 1 best predicted the long-term event-free survival and was strengthened when Knosp 3–4 CSI grades were used. Model 2 better identified the smaller adenomas at risk. Among the WHO 2017 special PA subtypes, patients with silent corticotroph adenoma had a lower event-free survival than ACTH-negative nonfunctional adenomas.

Conclusion

Use of CSI, ki-67 and tumor diameter in prediction models facilitates tailored surveillance and management of patients with pituitary adenomas.

Keywords

Pituitary adenoma Cavernous sinus invasion Ki-67 Diameter Atypical adenoma Aggressive adenoma 

Abbreviations

CSI

Cavernous sinus invasion

PPV

Positive predictive value

NPV

Negative predictive value

SD

Standard deviation

CD

Cushing’s disease

ACM

Acromegaly

NFA

Non-functional adenoma

SCA

Silent ACTH-positive adenoma

ACTH

Adrenocorticotropic hormone

PA

Pituitary adenomas

Notes

Acknowledgements

Emilee Wehunt, research coordinator responsible for regulatory aspects pertaining to this study.

Compliance with ethical standards

Conflict of interest

The authors have nothing to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of Emory’s institutional and/or national research committee.

References

  1. 1.
    Ostrom QT, Gittleman H, Farah P et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 15(Suppl 2):ii1–ii56PubMedPubMedCentralGoogle Scholar
  2. 2.
    Katznelson L, Laws ER, Melmed S et al (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951PubMedGoogle Scholar
  3. 3.
    Nieman LK, Biller BMK, Findling JW et al (2015) Treatment of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 100(8):2807–2831PubMedPubMedCentralGoogle Scholar
  4. 4.
    Melmed S, Casanueva FF, Hoffman AR et al (2011) Diagnosis and treatment of hyperprolactinemia: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96(2):273–288PubMedGoogle Scholar
  5. 5.
    Tampourlou M, Ntali G, Ahmed S et al (2017) Outcome of nonfunctioning pituitary adenomas that regrow after primary treatment: a study from two large UK centers. J Clin Endocrinol Metab 102(6):1889–1897PubMedGoogle Scholar
  6. 6.
    Colao A, Grasso LF, Pivonello R, Lombardi G (2011) Therapy of aggressive pituitary tumors. Expert Opin Pharmacother 12(10):1561–1570PubMedGoogle Scholar
  7. 7.
    Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas-diagnosis and emerging treatments. Nat Rev Endocrinol. 10(7):423–435PubMedGoogle Scholar
  8. 8.
    Lloyd RV, Kovacs K, Young WF Jr, Farrel WE, Asa SL, Trouillas J, Kontogeorgos G, Sano T, Scheithauer BHE (2004) Pituitary tumors: introduction. In: DeLellis RA, Lloyd RV, Heitz PUEC (eds) World Health Organization classification of tumours: pathology and genetics of tumours of endocrine organs, 3rd edn. International Agency for Research and Cancer, Lyon, pp 10–13Google Scholar
  9. 9.
    Zaidi HA, Cote DJ, Dunn IF, Laws ER (2016) Predictors of aggressive clinical phenotype among immunohistochemically confirmed atypical adenomas. J Clin Neurosci 34:246–251PubMedGoogle Scholar
  10. 10.
    Chiloiro S, Doglietto F, Trapasso B et al (2015) Typical and atypical pituitary adenomas: a single-center analysis of outcome and prognosis. Neuroendocrinology 101(2):143–150PubMedGoogle Scholar
  11. 11.
    Clayton RN, Jones PW, Reulen RC et al (2016) Mortality in patients with Cushing’s disease more than 10 years after remission: a multicentre, multinational, retrospective cohort study. Lancet Diabetes Endocrinol 4(7):569–576PubMedGoogle Scholar
  12. 12.
    Lindholm J, Juul S, Jørgensen JOL et al (2001) Incidence and late prognosis of Cushing’s syndrome: a population-based study. J Clin Endocrinol Metab 86(1):117–123PubMedGoogle Scholar
  13. 13.
    Briceno V, Zaidi HA, Doucette JA et al (2017) Efficacy of transsphenoidal surgery in achieving biochemical cure of growth hormone-secreting pituitary adenomas among patients with cavernous sinus invasion: a systematic review and meta-analysis. Neurol Res 39(5):387–398PubMedGoogle Scholar
  14. 14.
    Hwang J, Seol HJ, Nam D-H, Lee J-I, Lee MH, Kong D-S (2016) Therapeutic strategy for cavernous sinus-invading non-functioning pituitary adenomas based on the modified Knosp grading system. Brain tumor Res Treat 4(2):63–69PubMedPubMedCentralGoogle Scholar
  15. 15.
    Osamura RY, Lopes MBS, Grossman A, Kontogeorgos G, Trouillas J (2017) Introduction. In: Lloyd RV, Osamura RY, Klöppel G, Rosai J (eds) World Health Organization classification of tumours of endocrine organs, 4th edn. International Agency for Research and Cancer, Lyon, p 13Google Scholar
  16. 16.
    Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4):610–618PubMedGoogle Scholar
  17. 17.
    Akaike H (1974) A new look at the statistical model identification. Springer, New York, pp 215–222Google Scholar
  18. 18.
    Hardy J (1969) Transphenoidal microsurgery of the normal and pathological pituitary. Clin Neurosurg 16:185–217PubMedGoogle Scholar
  19. 19.
    Sarkar S, Philip VJ, Kiran Cherukuri S, Chacko AG, Chacko G (2017) Implications of the World Health Organization definition of atypia on surgically treated functional and non-functional pituitary adenomas. Eur J Neurosurg 159:2179–2186Google Scholar
  20. 20.
    Tortosa F, Webb SM (2016) Atypical pituitary adenomas: 10 years of experience in a reference centre in Portugal. Neurologia 31(2):97–105PubMedGoogle Scholar
  21. 21.
    Rutkowski MJ, Alward RM, Chen R et al (2018) Atypical pituitary adenoma: a clinicopathologic case series. J Neurosurg 128(4):1058–1065PubMedGoogle Scholar
  22. 22.
    Trouillas J, Roy P, Sturm N et al (2013) A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case–control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 126(1):123–135PubMedGoogle Scholar
  23. 23.
    Braileanu M, Hu R, Hoch MJ et al (2019) Pre-operative MRI predictors of hormonal remission status post pituitary adenoma resection. Clin Imaging 55:29–34PubMedGoogle Scholar
  24. 24.
    Madsen H, Borges TM, Knox AJ et al (2011) Giant pituitary adenomas. Am J Surg Pathol 35(8):1204–1213PubMedGoogle Scholar
  25. 25.
    Del Basso De Caro M, Solari D, Pagliuca F et al (2017) Atypical pituitary adenomas: clinical characteristics and role of ki-67 and p53 in prognostic and therapeutic evaluation. A series of 50 patients. Neurosurg Rev 40(1):105–114PubMedGoogle Scholar
  26. 26.
    Honegger J, Prettin C, Feuerhake F, Petrick M, Schulte-Mönting J, Reincke M (2003) Expression of Ki-67 antigen in nonfunctioning pituitary adenomas: correlation with growth velocity and invasiveness. J Neurosurg 99(4):674–679PubMedGoogle Scholar
  27. 27.
    Paek K-I, Kim S-H, Song S-H et al (2005) Clinical significance of Ki-67 labeling index in pituitary macroadenoma. J Korean Med Sci 20(3):489–494PubMedPubMedCentralGoogle Scholar
  28. 28.
    Mastronardi L, Guiducci A, Spera C, Puzzilli F, Liberati F, Maira G (1999) Ki-67 labelling index and invasiveness among anterior pituitary adenomas: analysis of 103 cases using the MIB-1 monoclonal antibody. J Clin Pathol 52(2):107–111PubMedPubMedCentralGoogle Scholar
  29. 29.
    Fusco A, Zatelli MC, Bianchi A et al (2008) Prognostic significance of the Ki-67 labeling index in growth hormone-secreting pituitary adenomas. J Clin Endocrinol Metab 93(7):2746–2750PubMedGoogle Scholar
  30. 30.
    Widhalm G, Wolfsberger S, Preusser M et al (2009) Residual nonfunctioning pituitary adenomas: prognostic value of MIB-1 labeling index for tumor progression. J Neurosurg 111(3):563–571PubMedGoogle Scholar
  31. 31.
    Tanaka Y, Hongo K, Tada T, Sakai K, Kakizawa Y, Kobayashi S (2003) Growth pattern and rate in residual nonfunctioning pituitary adenomas: correlations among tumor volume doubling time, patient age, and MIB-1 index. J Neurosurg 98(2):359–365PubMedGoogle Scholar
  32. 32.
    Filippella M, Galland F, Kujas M et al (2006) Pituitary tumour transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas: a clinical and immunohistochemical study. Clin Endocrinol (Oxf) 65(4):536–543Google Scholar
  33. 33.
    Asioli S, Righi A, Iommi M et al (2019) Validation of a clinicopathological score for the prediction of post-surgical evolution of pituitary adenoma: retrospective analysis on 566 patients from a tertiary care centre. Eur J Endocrinol 180(2):127–134PubMedGoogle Scholar
  34. 34.
    Thapar K, Kovacs K, Scheithauer BW et al (1996) Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38(1):99–107PubMedGoogle Scholar
  35. 35.
    Mizoue T, Kawamoto H, Arita K, Kurisu K, Tominaga A, Uozumi T (1997) MIB1 immunopositivity is associated with rapid regrowth of pituitary adenomas. Acta Neurochir (Wien) 139(5):426–432Google Scholar
  36. 36.
    Gejman R, Swearingen B, Hedley-Whyte ET (2008) Role of Ki-67 proliferation index and p53 expression in predicting progression of pituitary adenomas. Hum Pathol 39(5):758–766PubMedGoogle Scholar
  37. 37.
    Matsuyama J (2012) Ki-67 expression for predicting progression of postoperative residual pituitary adenomas: correlations with clinical variables. Neurol Med Chir (Tokyo) 52(8):563–569Google Scholar
  38. 38.
    Miermeister CP, Petersenn S, Buchfelder M et al (2015) Histological criteria for atypical pituitary adenomas—data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol Commun 3(1):50PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jaffrain-Rea ML, Di Stefano D, Minniti G et al (2002) A critical reappraisal of MIB-1 labelling index significance in a large series of pituitary tumours: secreting versus non-secreting adenomas. Endocr Relat Cancer 9(2):103–113PubMedGoogle Scholar
  40. 40.
    Pizarro CB, Oliveira MC, Coutinho LB, Ferreira NP (2004) Measurement of Ki-67 antigen in 159 pituitary adenomas using the MIB-1 monoclonal antibody. Braz J Med Biol Res 37(2):235–243PubMedGoogle Scholar
  41. 41.
    Lelotte J, Mourin A, Fomekong E, Michotte A, Raftopoulos C, Maiter D (2018) Both invasiveness and proliferation criteria predict recurrence of non-functioning pituitary macroadenomas after surgery: a retrospective analysis of a monocentric cohort of 120 patients. Eur J Endocrinol 178:237–246PubMedGoogle Scholar
  42. 42.
    Pei L, Melmed S (1997) Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 11(4):433–441Google Scholar
  43. 43.
    Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S (1999) Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 5:1317–1321PubMedGoogle Scholar
  44. 44.
    Filippella M, Galland F, Kujas M et al (2006) Pituitary tumour transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas: a clinical and immunohistochemical study. Clin Endocrinol (Oxf) 65:536–543Google Scholar
  45. 45.
    Trott G, Ongaratti BR, de Oliveira Silva CB et al (2019) PTTG overexpression in non-functioning pituitary adenomas: correlation with invasiveness, female gender and younger age. Ann Diagn Pathol 41:83–89PubMedGoogle Scholar
  46. 46.
    Scheithauer BW, Jaap AJ, Horvath E et al (2000) Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 47(3):723–729 discussion 729–730 PubMedGoogle Scholar
  47. 47.
    Cooper O, Ben-Shlomo A, Bonert V, Bannykh S, Mirocha J, Melmed S (2010) Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Horm Cancer 1(2):80–92PubMedPubMedCentralGoogle Scholar
  48. 48.
    Ioachimescu AG, Eiland L, Chhabra VS et al (2012) Silent corticotroph adenomas. Neurosurgery 71(2):296–304PubMedGoogle Scholar
  49. 49.
    Yoo F, Chan C, Kuan E, Bergsneider M, Wang M (2018) Comparison of male and female prolactinoma patients requiring surgical intervention. J Neurol Surg B 79(04):394–400Google Scholar
  50. 50.
    Kiseljak-Vassiliades K, Carlson NE, Borges MT et al (2015) Growth hormone tumor histological subtypes predict response to surgical and medical therapy. Endocrine 49(1):231–241PubMedGoogle Scholar
  51. 51.
    Sarkar S, Chacko AG, Chacko G (2015) Clinicopathological correlates of extrasellar growth patterns in pituitary adenomas. J Clin Neurosci 22(7):1173–1177PubMedGoogle Scholar
  52. 52.
    Todnem N, Ward A, Segar S, Rojiani AM, Rahimi SY (2018) Clinically silent adrenocorticotropic hormone—positive Crooke cell adenoma: case report and review of literature. World Neurosurg 119:197–200PubMedGoogle Scholar
  53. 53.
    Ceccato F, Regazzo D, Barbot M et al (2018) Early recognition of aggressive pituitary adenomas: a single-centre experience. Acta Neurochir (Wien) 160(1):49–55Google Scholar
  54. 54.
    Sav A, Rotondo F, Syro LV, Di Ieva A, Cusimano MD, Kovacs K (2015) Invasive, atypical and aggressive pituitary adenomas and carcinomas. Endocrinol Metab Clin N Am 44(1):99–104Google Scholar
  55. 55.
    Raverot G, Burman P, McCormack A et al (2018) European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178(1):G1–G24PubMedGoogle Scholar
  56. 56.
    Heaney A (2014) Management of aggressive pituitary adenomas and pituitary carcinomas. J Neurooncol 117(3):459–468PubMedGoogle Scholar
  57. 57.
    Chatzellis E, Alexandraki KI, Androulakis II, Kaltsas G (2015) Aggressive pituitary tumors. Neuroendocrinology 101(2):87–104PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Emory University School of MedicineAtlantaUSA
  2. 2.Emory Rollins School of Public HealthAtlantaUSA
  3. 3.Department of PathologyEmory University School of MedicineAtlantaUSA
  4. 4.Division of Endocrinology, Metabolism and Lipids, Department of MedicineEmory University School of MedicineAtlantaUSA
  5. 5.Department of NeurosurgeryEmory University School of MedicineAtlantaUSA

Personalised recommendations