Advertisement

Pituitary

, Volume 22, Issue 5, pp 467–475 | Cite as

Predicting early post-operative remission in pituitary adenomas: evaluation of the modified knosp classification

  • Marie Buchy
  • Véronique Lapras
  • Muriel Rabilloud
  • Alexandre Vasiljevic
  • Françoise Borson-Chazot
  • Emmanuel Jouanneau
  • Gérald RaverotEmail author
Article

Abstract

Purpose

Cavernous sinus invasion by pituitary adenomas is an important prognostic factor for evaluating the possibilities of complete remission and to guide patient management. A widely used Magnetic Resonance Imaging grading system, suggested by Knosp in 1993, has recently been revised by the same group. The aims of our study were to apply this revised grading system to our surgical series, to determine its association with surgical outcomes, gross-total resection (GTR) and endocrinological remission (ER), paying particular attention to grades 3A and 3B, which represent the novelty of this revised classification.

Methods

We included consecutive patients who underwent endoscopic endonasal surgery for a macroadenoma from September 2012 to December 2016. MRI images were reviewed and classified according to the revised Knosp classification. Surgical reports indicated the intra-operative CS invasion. GTR and ER were evaluated on 3-months post-operative MRI and endocrine evaluation.

Results

254 patients were included in this study. We found a total rate of cavernous sinus invasion of 18.4%. Different outcomes were observed for each grade, with an increased rate of cavernous sinus invasion with each grade. Per-operative rates of invasion were 61.5 and 78.6% in grades 3A and 3B respectively. GTR was negatively correlated with the grade, while rates were 55.8% and 30.0% for grades 3A and 3B respectively.

Conclusion

The revised Knosp radiological classification contributes to the prediction of surgical outcomes and early ER in pituitary adenomas. To manage, as precisely as possible, the risk of early recurrence in pituitary adenomas, clinicians should also consider other recognized prognostic factors, such as the proliferative status of the tumor.

Keywords

Pituitary adenoma Classification Cavernous sinus Prognosis Remission 

Notes

References

  1. 1.
    Raverot G, Dantony E, Beauvy J et al (2017) Risk of recurrence in pituitary neuroendocrine tumors: a prospective study using a five-tiered classification. J Clin Endocrinol Metab 102:3368–3374.  https://doi.org/10.1210/jc.2017-00773 CrossRefGoogle Scholar
  2. 2.
    Brochier S, Galland F, Kujas M et al (2010) Factors predicting relapse of nonfunctioning pituitary macroadenomas after neurosurgery: a study of 142 patients. Eur J Endocrinol 163:193–200.  https://doi.org/10.1530/EJE-10-0255 CrossRefGoogle Scholar
  3. 3.
    Trouillas J, Roy P, Sturm N et al (2013) A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 126:123–135.  https://doi.org/10.1007/s00401-013-1084-y CrossRefGoogle Scholar
  4. 4.
    Bourdelot A, Coste J, Hazebroucq V et al (2004) Clinical, hormonal and magnetic resonance imaging (MRI) predictors of transsphenoidal surgery outcome in acromegaly. Eur J Endocrinol 150:763–771CrossRefGoogle Scholar
  5. 5.
    Zaidi HA, Awad A-W, Bohl MA et al (2016) Comparison of outcomes between a less experienced surgeon using a fully endoscopic technique and a very experienced surgeon using a microscopic transsphenoidal technique for pituitary adenoma. J Neurosurg 124:596–604.  https://doi.org/10.3171/2015.4.JNS15102 CrossRefGoogle Scholar
  6. 6.
    Aflorei ED, Korbonits M (2014) Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol 117:379–394.  https://doi.org/10.1007/s11060-013-1354-5 CrossRefGoogle Scholar
  7. 7.
    Raverot G, Vasiljevic A, Jouanneau E (2018) Prognostic factors of regrowth in nonfunctioning pituitary tumors. Pituitary 21:176–182.  https://doi.org/10.1007/s11102-017-0861-3 CrossRefGoogle Scholar
  8. 8.
    Meij BP, Lopes M-BS, Ellegala DB et al (2002) The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J Neurosurg 96:195–208.  https://doi.org/10.3171/jns.2002.96.2.0195 CrossRefGoogle Scholar
  9. 9.
    Ahmadi J, North CM, Segall HD et al (1986) Cavernous sinus invasion by pituitary adenomas. AJR Am J Roentgenol 146:257–262.  https://doi.org/10.2214/ajr.146.2.257 CrossRefGoogle Scholar
  10. 10.
    Cortet-Rudelli C, Bonneville J-F, Borson-Chazot F et al (2015) Post-surgical management of non-functioning pituitary adenoma. Ann Endocrinol 76:228–238.  https://doi.org/10.1016/j.ando.2015.04.003 CrossRefGoogle Scholar
  11. 11.
    Roelfsema F, Biermasz NR, Pereira AM (2012) Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary 15:71–83.  https://doi.org/10.1007/s11102-011-0347-7 CrossRefGoogle Scholar
  12. 12.
    Raverot G, Burman P, McCormack A et al (2018) European society of endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178:G1–G24.  https://doi.org/10.1530/EJE-17-0796 CrossRefGoogle Scholar
  13. 13.
    Juraschka K, Khan OH, Godoy BL et al (2014) Endoscopic endonasal transsphenoidal approach to large and giant pituitary adenomas: institutional experience and predictors of extent of resection. J Neurosurg 121:75–83.  https://doi.org/10.3171/2014.3.JNS131679 CrossRefGoogle Scholar
  14. 14.
    Fahlbusch R, Buchfelder M (1988) Transsphenoidal surgery of parasellar pituitary adenomas. Acta Neurochir 92:93–99CrossRefGoogle Scholar
  15. 15.
    Enseñat J, Ortega A, Topcewski T et al (2006) Predictive value of the Knosp classification in grading the surgical resection of invasive pituitary macroadenomas. A prospective study of 23 cases. Neurocir Astur Spain 17:519–526CrossRefGoogle Scholar
  16. 16.
    Zoli M, Milanese L, Bonfatti R et al (2016) Cavernous sinus invasion by pituitary adenomas: role of endoscopic endonasal surgery. J Neurosurg Sci 60:485–494Google Scholar
  17. 17.
    Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617 (Discussion 617–618) Google Scholar
  18. 18.
    Micko ASG, Wöhrer A, Wolfsberger S, Knosp E (2015) Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg 122:803–811.  https://doi.org/10.3171/2014.12.JNS141083 CrossRefGoogle Scholar
  19. 19.
    Dehdashti AR, Ganna A, Karabatsou K, Gentili F (2008) Pure endoscopic endonasal approach for pituitary adenomas: early surgical results in 200 patients and comparison with previous microsurgical series. Neurosurgery 62:1006–1015.  https://doi.org/10.1227/01.neu.0000325862.83961.12 (Discussion 1015–1017) CrossRefGoogle Scholar
  20. 20.
    Berhouma M, Messerer M, Jouanneau E (2012) Occam’s razor in minimally invasive pituitary surgery: tailoring the endoscopic endonasal uninostril trans-sphenoidal approach to sella turcica. Acta Neurochir 154:2257–2265.  https://doi.org/10.1007/s00701-012-1510-2 CrossRefGoogle Scholar
  21. 21.
    Lee S-H, Park J-S, Lee S et al (2016) Parasellar extension grades and surgical extent in endoscopic endonasal transsphenoidal surgery for pituitary adenomas: a single surgeon’s consecutive series with the aspects of reliability and clinical validity. J Korean Neurosurg Soc 59:577–583.  https://doi.org/10.3340/jkns.2016.59.6.577 CrossRefGoogle Scholar
  22. 22.
    Shou X, Shen M, Zhang Q et al (2016) Endoscopic endonasal pituitary adenomas surgery: the surgical experience of 178 consecutive patients and learning curve of two neurosurgeons. BMC Neurol 16:247.  https://doi.org/10.1186/s12883-016-0767-0 CrossRefGoogle Scholar
  23. 23.
    Selman WR, Laws ER, Scheithauer BW, Carpenter SM (1986) The occurrence of dural invasion in pituitary adenomas. J Neurosurg 64:402–407.  https://doi.org/10.3171/jns.1986.64.3.0402 CrossRefGoogle Scholar
  24. 24.
    Castinetti F, Dufour H, Gaillard S, et al (2012) Consensus de la Société Française d’Endocrinologie sur les adénomes hypohysaires non fonctionnelsGoogle Scholar
  25. 25.
    Galland F, Vantyghem M-C, Cazabat L et al (2015) Management of nonfunctioning pituitary incidentaloma. Ann Endocrinol 76:191–200.  https://doi.org/10.1016/j.ando.2015.04.004 CrossRefGoogle Scholar
  26. 26.
    Chen Y, Wang CD, Su ZP et al (2012) Natural history of postoperative nonfunctioning pituitary adenomas: a systematic review and meta-analysis. Neuroendocrinology 96:333–342.  https://doi.org/10.1159/000339823 CrossRefGoogle Scholar
  27. 27.
    Losa M, Donofrio CA, Barzaghi R, Mortini P (2013) Presentation and surgical results of incidentally discovered nonfunctioning pituitary adenomas: evidence for a better outcome independently of other patients’ characteristics. Eur J Endocrinol 169:735–742.  https://doi.org/10.1530/EJE-13-0515 CrossRefGoogle Scholar
  28. 28.
    Murad MH, Fernández-Balsells MM, Barwise A et al (2010) Outcomes of surgical treatment for nonfunctioning pituitary adenomas: a systematic review and meta-analysis. Clin Endocrinol 73:777–791.  https://doi.org/10.1111/j.1365-2265.2010.03875.x CrossRefGoogle Scholar
  29. 29.
    Pereira AM, Biermasz NR (2012) Treatment of nonfunctioning pituitary adenomas: what were the contributions of the last 10 years? A critical view. Ann Endocrinol 73:111–116.  https://doi.org/10.1016/j.ando.2012.04.002 CrossRefGoogle Scholar
  30. 30.
    Messerer M, Dubourg J, Raverot G et al (2013) Non-functioning pituitary macro-incidentalomas benefit from early surgery before becoming symptomatic. Clin Neurol Neurosurg 115:2514–2520.  https://doi.org/10.1016/j.clineuro.2013.10.007 CrossRefGoogle Scholar
  31. 31.
    Bradley KJ, Wass JAH, Turner HE (2003) Non-functioning pituitary adenomas with positive immunoreactivity for ACTH behave more aggressively than ACTH immunonegative tumours but do not recur more frequently. Clin Endocrinol 58:59–64CrossRefGoogle Scholar
  32. 32.
    Scheithauer BW, Jaap AJ, Horvath E et al (2000) Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 47:723–729 (Discussion 729–730) Google Scholar
  33. 33.
    Webb KM, Laurent JJ, Okonkwo DO et al (2003) Clinical characteristics of silent corticotrophic adenomas and creation of an internet-accessible database to facilitate their multi-institutional study. Neurosurgery 53:1076–1084 (Discussion 1084–1085) CrossRefGoogle Scholar
  34. 34.
    Cooper O, Ben-Shlomo A, Bonert V et al (2010) Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Horm Cancer 1:80–92.  https://doi.org/10.1007/s12672-010-0014-x CrossRefGoogle Scholar
  35. 35.
    Fountas A, Lavrentaki A, Subramanian A et al (2018) Recurrence in silent corticotroph adenomas after primary treatment: a systematic review and meta-analysis. J Clin Endocrinol Metab 104:1039–1048.  https://doi.org/10.1210/jc.2018-01956 Google Scholar
  36. 36.
    Yamada S, Ohyama K, Taguchi M et al (2007) A study of the correlation between morphological findings and biological activities in clinically nonfunctioning pituitary adenomas. Neurosurgery 61:580–584.  https://doi.org/10.1227/01.NEU.0000290906.53685.79 CrossRefGoogle Scholar
  37. 37.
    Langlois F, Lim DST, Yedinak CG et al (2018) Predictors of silent corticotroph adenoma recurrence; a large retrospective single center study and systematic literature review. Pituitary 21:32–40.  https://doi.org/10.1007/s11102-017-0844-4 CrossRefGoogle Scholar
  38. 38.
    Langlois F, Woltjer R, Cetas JS, Fleseriu M (2018) Silent somatotroph pituitary adenomas: an update. Pituitary 21:194–202.  https://doi.org/10.1007/s11102-017-0858-y CrossRefGoogle Scholar
  39. 39.
    Langlois F, Lim DST, Varlamov E et al (2017) Clinical profile of silent growth hormone pituitary adenomas; higher recurrence rate compared to silent gonadotroph pituitary tumors, a large single center experience. Endocrine 58:528–534.  https://doi.org/10.1007/s12020-017-1447-6 CrossRefGoogle Scholar
  40. 40.
    Castinetti F, Morange I, Dubois N et al (2009) Does first-line surgery still have its place in the treatment of acromegaly? Ann Endocrinol 70:107–112.  https://doi.org/10.1016/j.ando.2009.03.002 CrossRefGoogle Scholar
  41. 41.
    Brue T, Delemer B, French Society of Endocrinology (SFE) work group on the consensus on hyperprolactinemia (2007) Diagnosis and management of hyperprolactinemia: expert consensus—French Society of Endocrinology. Ann Endocrinol 68:58–64.  https://doi.org/10.1016/j.ando.2006.11.001 CrossRefGoogle Scholar
  42. 42.
    Casanueva FF, Molitch ME, Schlechte JA et al (2006) Guidelines of the pituitary society for the diagnosis and management of prolactinomas. Clin Endocrinol 65:265–273.  https://doi.org/10.1111/j.1365-2265.2006.02562.x CrossRefGoogle Scholar
  43. 43.
    Lelotte J, Mourin A, Fomekong E et al (2018) Both invasiveness and proliferation criteria predict recurrence of non-functioning pituitary macroadenomas after surgery: a retrospective analysis of a monocentric cohort of 120 patients. Eur J Endocrinol 178:237–246.  https://doi.org/10.1530/EJE-17-0965 CrossRefGoogle Scholar
  44. 44.
    Asioli S, Righi A, Iommi M et al (2019) Validation of a clinicopathological score for the prediction of post-surgical evolution of pituitary adenoma: retrospective analysis on 566 patients from a tertiary care centre. Eur J Endocrinol 180:127–134.  https://doi.org/10.1530/EJE-18-0749 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fédération d’Endocrinologie, Centre de Référence Maladies Rares hypophysaires, Groupement Hospitalier EstHospices Civils de LyonBronFrance
  2. 2.Service d’Endocrinologie, Diabète, NutritionCentre Hospitalier Lyon Sud, Hospices Civils de LyonPierre-BéniteFrance
  3. 3.Université Lyon 1VilleurbanneFrance
  4. 4.Service de RadiologieCentre Hospitalier Lyon Sud, Hospices Civils de LyonPierre-BéniteFrance
  5. 5.Hospices Civils de Lyon, Service de Biostatistiques et Bio-informatiqueLyonFrance
  6. 6.CNRS, UMR 5558, Laboratoire de Biométrie et Biologie EvolutiveEquipe de Biostatistiques-SantéVilleurbanneFrance
  7. 7.INSERM U1052, CNRS, UMR5286; Cancer Research Center of LyonLyonFrance
  8. 8.Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de LyonBronFrance
  9. 9.Service de Neurochirurgie, Groupement Hospitalier Est, Hospices Civils de LyonBronFrance

Personalised recommendations