, Volume 22, Issue 4, pp 411–421 | Cite as

Role of gamma knife radiosurgery in the treatment of prolactinomas

  • Jana JežkováEmail author
  • Václav Hána
  • Mikuláš Kosák
  • Michal Kršek
  • Roman Liščák
  • Josef Vymazal
  • Ladislav Pecen
  • Josef Marek



Stereotactic radiosurgery is one of the treatment options for prolactinomas, the most commonly used being Gamma Knife Radiosurgery (GKRS). GKRS is indicated mainly in the treatment of dopamine agonist (DA)-resistant prolactinomas. In our study, we report on our experience in treating prolactinoma patients by GKRS.


Twenty-eight patients were followed-up after GKRS for 26–195 months (median 140 months). Prior to GKRS, patients were treated with DAs and 9 of them (32.1%) underwent previous neurosurgery. Cavernous sinus invasion was present in 16 (57.1%) patients. Indications for GKRS were (i) resistance to DA treatment (17 patients), (ii) drug intolerance (5 patients), or (iii) attempts to reduce the dosage and/or shorten the length of DA treatment (6 patients).


After GKRS, normoprolactinaemia was achieved in 82.1% of patients, out of which hormonal remission (normoprolactinaemia after discontinuation of DAs) was achieved in 13 (46.4%), and hormonal control (normoprolactinaemia while taking DAs) in 10 (35.7%) patients. GKRS arrested adenoma growth or decreased adenoma size in all cases. Two patients (8.3%) developed hypopituitarism after GKRS. Prolactinoma cystic transformation with expansive behaviour, manifested by bilateral hemianopsia, was observed in one patient.


GKRS represents an effective treatment option, particularly for DA-resistant prolactinomas. Normoprolactinaemia was achieved in the majority of patients, either after discontinuation of, or while continuing to take, DAs. Tumour growth was arrested in all cases. The risk of the development of hypopituitarism can be limited if the safe dose to the pituitary and infundibulum is maintained.


Gamma knife radiosurgery Prolactinoma Resistance Hypopituitarism 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.


  1. 1.
    Webster J, Piscitelli G, Polli A, Ferrari CI, Ismail I, Scanlon MF (1994) A comparison of cabergoline and bromocriptine in the treatment of hyperprolactinemic amenorrhea. Cabergoline comparative study group. N Engl J Med 331(14):904–909CrossRefGoogle Scholar
  2. 2.
    Colao A, Di Sarno A, Sarnacchiaro F, Ferona D, Di Renzo G, Merola B, Annunziato L, Lobardi G (1997) Prolactinoma resistant to standard dopamine agonists respond to chronic cabergoline treatment. J Clin Endocrinol Metab 82(3):876–883CrossRefGoogle Scholar
  3. 3.
    Berinder K, Stackenas I, Akre O, Hirschberg AL, Hulting AL (2005) Hyperprolactinaemia in 271 women: up to three decades of clinical follow-up. Clin Endocrinol 63:450–455CrossRefGoogle Scholar
  4. 4.
    Rains CP, Bryson HM, Cabergoline Fitton A (1995) A review of its pharmacological properties and therapeutic potential in the treatment of hyperprolactinemia and inhibition lactation. Drug 49:255–279CrossRefGoogle Scholar
  5. 5.
    Webster J (1996) A comparative review of the tolerability profiles of dopamine agonists in the treatment of hyperprolactinemia and inhibition lactation. Drug Saf 14(4):28–238CrossRefGoogle Scholar
  6. 6.
    Vilar L, Burke CW (1994) Quinagolide efficacy and tolerability in hyperprolactinaemic patients who are resistant to or intolerant of bromocriptine. Clin Endocrinol 41(6):821–826CrossRefGoogle Scholar
  7. 7.
    Di Sarno A, Landi ML, Cappabianca P, Di Salle F, Rossi FW, Pivonello R, Di Somma C, Faggiano A, Lombardi G, Colao A (2001) Resistance to cabergoline as compared with bromocriptine in hyperprolactinemia: prevalence, clinical definition, and therapeutic strategy. J Clin Endocrinol Metab 86:5256–5261CrossRefGoogle Scholar
  8. 8.
    Ono M, Miki N, Kawamata T, Makino R, Amano K, Seki T, Kubo O, Hori T, Takano K (2008) Prospective study of high-dose cabergoline treatment of prolactinoma in 150 patients. J Clin Endocrinol Metab 93:4721–4727CrossRefGoogle Scholar
  9. 9.
    Vroonen L, Jaffrain-Rea ML, Petrossians P, Tamagno G, Cjanson P, Vilar L, Borson-Chazot F, Naves L, Brue T, Gatta B, Delemer B, Ciccareli E, Beck-Peccoz P, Caron P, Daly A, Beckers A (2012) Prolactinomas resistant to standard doses of cabergoline: a multicenter study of 92 patients. Eur J Endocrinol 167:651–662CrossRefGoogle Scholar
  10. 10.
    Delgrange E, Daems T, Verhelst J, Abs R, Maiter D (2009) Characterization of resistence to the prolactin-lowering effects of cabergoline in macroprolactinomas: a study in 122 patients. Eur J Endocrinol 160:747–752CrossRefGoogle Scholar
  11. 11.
    Verges B, Boureille F, Goudet P, Murat A, Beckers A, Sassolas G, Cougard P, Chambe P, Montvernay C, Calender A (2002) Pituitary disease in MEN type 1 (MEN1): data from France-Belgium MEN 1 multicenter study. J Clin Endocrinol Metab 87:457–465CrossRefGoogle Scholar
  12. 12.
    Gillam MP, Molitch ME, Lombardi G, Colao A (2006) Advances in the treatment of prolactinomas. Endocr Rev 27(5):485–534CrossRefGoogle Scholar
  13. 13.
    Tanaka S, Link MJ, Brown PD, Stafford SL, Young WF Jr, Pollock BE (2010) Gamma knife radiosurgery for patients with prolactin-secreting pituitary adenomas. World Neurosurg 74(1):147–153CrossRefGoogle Scholar
  14. 14.
    Sheehan JP, Pouratian N, Steiner L, Laws ED, Vance ML (2011) Gamma Knife surgery for pituitary adenomas: factors related to radiological and endocrine outcomes. J Neurosurg 114(2):303–309CrossRefGoogle Scholar
  15. 15.
    Choi JY, Chang JH, Chang JW et al (2003) Radiological and hormonal responses of functioning pituitary adenomas after gamma knife radiosurgery. Yonsei Med J 44:602–607CrossRefGoogle Scholar
  16. 16.
    Pollock BE, Nippoldt TB, Stafford SL et al (2002) Results of stereotactic radiosurgery in patients with hormone-producing pituitary adenomas: factors associated with endocrine normalization. J Neurosurg 97:525–530CrossRefGoogle Scholar
  17. 17.
    Sheehan JP, Niranjan A, Sheehan JM et al (2005) Stereotactic radiosurgery for pituitary adenomas: an intermediate review of its safety, efficacy, and role in the neurosurgical treatment armamentarium. J Neurosurg 102(4):678–691CrossRefGoogle Scholar
  18. 18.
    Ježková J, Hána V, Kršek M et al (2009) Use of the Leksell gamma knife in the treatment of prolactinoma patients. Clin Endocrinol 70:732–741CrossRefGoogle Scholar
  19. 19.
    Vladyka V, Liščák R, Novotný J Jr et al (2003) Radiation tolerance of functioning pituitary tissue in gamma knife surgery for pituitary adenomas. Neurosurgery 52:309–317CrossRefGoogle Scholar
  20. 20.
    Marek J, Ježková J, Hána V et al (2011) Is it possible to avoid hypopituitarism after irradiation of pituitary adenomas by the Leksell gamma knife? Eur J Endocrinol 164:169–178CrossRefGoogle Scholar
  21. 21.
    Novotný J Jr, Novotný J, Vymazal J, Liščák R, Vladyka V (1998) Assessment pf the accuracy of stereotactic target localization using magnetic resonance imaging: phantom study. J Neurosurg 1:99–111Google Scholar
  22. 22.
    Ježková J, Marek J, Liščák R (2013) Pituitary adenomas. In: Liščák R (ed) Gamma knife radiosurgery. Nova Science, New York, pp 169–188Google Scholar
  23. 23.
    Melmed S, Casanueva FF, Hoffman AR, Kleinberg DL, Montori VM, Schlechte JA, Wass JAH (2011) Diagnosis and treatment of hyperprolactinemia: an endocrine society clinical practice guidline. J Clin Endocrinol Metab 96(2):273–288CrossRefGoogle Scholar
  24. 24.
    Lim YL, Leem W, Kim TS et al (1998) Four years-experience in the treatment of pituitary adenomas with gamma knife radiosurgery. Stereotact Funct Neurosurg 70(Suppl. 1):95–109CrossRefGoogle Scholar
  25. 25.
    Hayashi M, Izawa M, Hiyama H et al (1999) Gamma knife radiosurgery for pituitary adenomas. Stereotact Funct Neurosurg 72(Suppl. 1):111–118CrossRefGoogle Scholar
  26. 26.
    Kim SH, Huh R, Chang JW et al (1999) Gamma knife radiosurgery for functioning pituitary adenomas. Stereotact Funct Neurosurg 72(Suppl. 1):101–110CrossRefGoogle Scholar
  27. 27.
    Mokry M, Ramschak-Schwarzer S, Simbrunner J et al (1999) A six year experience with the postoperative radiosurgical management of pituitary adenomas. Stereotact Funct Neurosurg 72(Suppl. 1):88–100CrossRefGoogle Scholar
  28. 28.
    Pan L, Zhang N, Wang EM et al (2000) Gamma knife radiosurgery as a primary treatment for prolactinomas. J Neurosurg 93(Suppl. 3):10–13CrossRefGoogle Scholar
  29. 29.
    Landolt AM, Lomax N (2000) Gamma knife radiosurgery for prolactinomas. J Neurosurg 93(Suppl. 3):14–18CrossRefGoogle Scholar
  30. 30.
    Petrovich Z, Yu C, Gianotta SL, Zee CS et al (2003) Gamma knife radiosurgery for pituitary adenoma: early results. Neurosurgery 53:51–59 (discussion, 59-61) CrossRefGoogle Scholar
  31. 31.
    Kuo JS, Chen JCT, Cheng Y et al (2004) Gamma knife radiosurgery for benign cavernous sinus tumors: quantitative analysis of treatment outcomes. Neurosurgery 54:1385–1392CrossRefGoogle Scholar
  32. 32.
    Pouratian N, Sheehan J, Jagannathan J et al (2006) Gamma knife radiosurgery for medically and surgically refractory prolactinomas. Neurosurgery 59:255–264CrossRefGoogle Scholar
  33. 33.
    Castinetti F, Nagai M, Morange I, Dufour H, Caron P, Chanson P, Cortet-Rudelli C, Kuhn JM, Conte-Devolx B, Regis J, Brue T (2009) Long-term results of stereotactic radiosurgery in secretory pituitary adenomas. J Clin Endocrinol Metab 94:3400–3407CrossRefGoogle Scholar
  34. 34.
    Liu X, Kano H, Kondziolka D, Park KJ, Iyer A, Shin S, Niranjan A, Flickinger JC, Lunsford LD (2013) Gamma knife stereotactic radiosurgery for drug resistant or intolerant invasive prolactinomas. Pituitary 16:68–75CrossRefGoogle Scholar
  35. 35.
    Elshirbiny MF, Hafez RFA, Ali N, Ezzeldien AS, Kassem MA (2015) Role of gamma knife radiosurgery in the management of functioning pituitary adenomas. Benha Med J 32:6–12CrossRefGoogle Scholar
  36. 36.
    Cohen-Inbar O, Xu Z, Schlesinger D, Vance MR, Sheehan JP (2015) Gamma Knife radiosurgery for medically and surgically refractory prolactinomas: long-term results. Pituitary 18:820–830CrossRefGoogle Scholar
  37. 37.
    Ježková J, Marek J, Hána V et al (2006) Gamma knife radiosurgery for acromegaly—long-term experience. Clin Endocrinol 64:588–595CrossRefGoogle Scholar
  38. 38.
    Marek J, Ježková J, Hána V et al (2015) Gamma knife radiosurgery for Cushing´s disease and Nelson´s syndrome. Pituitary 18(3):376–384CrossRefGoogle Scholar
  39. 39.
    Webster J, Piscitelli G, Polli A, Alberton A, Falsetti L, Ferrari C, Fioretti P, Giordano G, Hermite M, Ciccarelli E, European Multicenter.: Cabergoline Dose-finding Study Group (1992) Dose depend suppression of serum prolactin by cabergoline in hyperprolactinaemia: a placebo controlled, double blind, multicentre study. European Multicenter Cabergoline Dose-findng Study Group. Clin Endocrinol 37:534–541CrossRefGoogle Scholar
  40. 40.
    Shimon I, Benbassat C, Hadani M (2007) Effectivness of long-term cabergoline treatment for giant prolactinoma: study of 12 men. Eur J Endocrinol 156:225–231CrossRefGoogle Scholar
  41. 41.
    Schade R, Andersohn F, Suissa S, Haverkamp W, Garbe E (2007) Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 356:29–38CrossRefGoogle Scholar
  42. 42.
    Zanettini R, Antonini A, Gatto G, Gentile R, Tesei S, Pezzoli G (2007) Valvular heart disease and the use of dopamine agonists for Parkinson´s disease. N Engl J Med 356(1):39–46CrossRefGoogle Scholar
  43. 43.
    Dekkers OM, Lagro J, Burman P, Jorgensen JO, Romijn JA, Pereira AM (2010) Recurrence of hyperprolactinemia after withdrawal of dopamine agonists: systematic review and meta-analysis. J Clin Endocrinol Metab 95(1):43–51CrossRefGoogle Scholar
  44. 44.
    Iglesias P, Díez JJ (2013) Macroprolactinoma: a diagnostic and therapeutic update. QJM 106:495–504CrossRefGoogle Scholar
  45. 45.
    O’Connor MM, Mayberg MR (2000) Effects of radiation on cerebral vasculature: a review. Neurosurgery 46:138–149 (discussion 150-1) CrossRefGoogle Scholar
  46. 46.
    Akai T, Torigoe K, Fukushima M, Iizuka H, Hayashi Y (2015) De novo aneurysm formation following gamma knife surgery for arteriovenous malformation: a case report. J Neurol Surg Rep 76:e105–e108CrossRefGoogle Scholar
  47. 47.
    Cordeiro D, Xu Z, Mehta GU (2018) Hypopituitarism after gamma knife radiosurgery for pituitary adenomas: a multicenter, international study. J Neurosurg. Google Scholar
  48. 48.
    Ikeda H, Jokura H, Yoshimoto T et al (2001) Transsphenoidal surgery and adjuvant gamma knife treatment for growth hormone-secreting pituitary adenoma. J Neurosurg 95:285–291CrossRefGoogle Scholar
  49. 49.
    Feigl GC, Bonelli CM, Berghold A, Mokry M (2002) Effects of gamma knife radiosurgery of pituitary adenomas on pituitary function. J Neurosurg 97(Suppl 5):415–421CrossRefGoogle Scholar
  50. 50.
    Leenstra JL, Tanaka S, Kline RW, Brown PD, Lnk MJ, Nippoldt TB, Young WF Jr, Pollock BE (2010) Factors associated with endocrine deficits after stereotactic radiosurgery of pituitary adenomas. Neurosurgery 67:27–33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Third Department of Medicine, First Faculty of MedicineCharles University and General University HospitalPragueCzech Republic
  2. 2.Second Department of Medicine, Third Faculty of MedicineCharles University and University Hospital Královské VinohradyPragueCzech Republic
  3. 3.Stereotactic and Radiation NeurosurgeryNa Homolce HospitalPragueCzech Republic
  4. 4.Radiodiagnostic DepartmentNa Homolce HospitalPragueCzech Republic
  5. 5.Institute of Informatics of the Czech Academy of SciencePragueCzech Republic

Personalised recommendations