Advertisement

Pituitary

, Volume 22, Issue 4, pp 397–404 | Cite as

Preoperative visual evoked potential in the prediction of visual outcome after pituitary macroadenomas surgery

  • Mohammad Taghvaei
  • Seyed Mousa Sadrehosseini
  • Nima Ostadrahimi
  • Payam Sarraf
  • Mehdi ZeinalizadehEmail author
Article
  • 37 Downloads

Abstract

Objective

The purpose of the present study is to investigate longitudinal changes in Visual evoked potential (VEP) parameters as an objective test after transsphenoidal surgery, its correlation with subjective tests and clinical value of VEP in the prediction of visual outcome.

Methods

Fifty patients with pituitary macroadenoma who underwent surgical removal of the tumor recruited in this study. All the patients underwent ophthalmic examination, static automated perimetry (SAP), VEP and magnetic resonance imaging (MRI) preoperatively and 3 months after surgery.

Results

Fifty patients with pituitary macroadenoma (size: 25.1 ± 9.9 mm) were recruited in the study. Before surgery, the pattern of VEP showed a prolonged latency with reduced amplitude in eyes with abnormal visual acuity or abnormal visual field. The P100 wave latencies and amplitudes showed significant correlation with visual acuity and SAP scores. After surgery, visual acuity and visual field improvements were seen in 51% and 65.6% of eyes, respectively. Mean SAP and visual acuity scores increased significantly (p < 0.01), P100 wave latency declined and amplitude improved after surgery but not significantly. The mean age of patients, size of tumors and preoperative P100 wave latency were significantly lower in eyes with visual field and acuity improvement.

Conclusion

VEP is a helpful quantitative and objective complementary test to visual acuity and SAP exams for assessing pre-operative visual abnormalities and post-operative visual outcome in patients with pituitary macroadenoma.

Keywords

Pituitary adenoma Standard automated perimetry Transsphenoidal surgery Visual acuity Visual evoked potential Visual field 

Notes

References

  1. 1.
    Molitch ME (2017) Diagnosis and treatment of pituitary adenomas: a review. JAMA 317(5):516–524CrossRefGoogle Scholar
  2. 2.
    Hornyak M, Digre K, Couldwell WT (2009) Neuro-ophthalmologic manifestations of benign anterior skull base lesions. Postgrad Med 121(4):103–114CrossRefGoogle Scholar
  3. 3.
    Kivelä T, Pelkonen R, Oja M, Heiskanen O (1998) Diabetes insipidus and blindness caused by a suprasellar tumor: Pieter Pauw’s observations from the 16th century. JAMA 279(1):48–50CrossRefGoogle Scholar
  4. 4.
    Yang EB, Hood DC, Rodarte C, Zhang X, Odel JG, Behrens MM (2007) Improvement in conduction velocity after optic neuritis measured with the multifocal VEP. Invest Ophthalmol Vis Sci 48(2):692–698CrossRefGoogle Scholar
  5. 5.
    Klistorner A, Graham S, Fraser C, Garrick R, Nguyen T, Paine M, O’Day J, Grigg J, Arvind H, Billson FA (2007) Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Invest Ophthalmol Vis Sci 48(10):4549–4556CrossRefGoogle Scholar
  6. 6.
    Gott PS, Weiss MH, Apuzzo M, Van Der Meulen JP (1979) > Checkerboard visual evoked response in evaluation and management of pituitary tumors. Neurosurgery 5(5):553–558CrossRefGoogle Scholar
  7. 7.
    Petersen J (1984) Objective determination of visual acuity by visual evoked potentials. Spec Tests Vis Funct 9:108–114Google Scholar
  8. 8.
    Feinsod M, Selhorst JB, Hoyt WF, Wilson CB (1976) Monitoring optic nerve function during craniotomy. J Neurosurg 44(1):29–31CrossRefGoogle Scholar
  9. 9.
    Wilson W, Kirsch W, Neville H, Stears J, Feinsod M, Lehman R (1976) Monitoring of visual function during parasellar surgery. Surg Neurol 5(6):323–329Google Scholar
  10. 10.
    Semela L, Hedges TR, Vuong L (2007) Serial multifocal visual evoked potential recordings in compressive optic neuropathy. Ophthalmic Sur Lasers Imaging Retina 38(3):250–253Google Scholar
  11. 11.
    Flanagan J, Harding G (1988) Multi-channel visual evoked potentials in early compressive lesions of the chiasm. Doc Ophthalmol 69(3):271–281CrossRefGoogle Scholar
  12. 12.
    Klistorner A, Arvind H, Garrick R, Graham SL, Paine M, Yiannikas C (2010) Interrelationship of optical coherence tomography and multifocal visual-evoked potentials after optic neuritis. Invest Ophthalmol Vis Sci 51(5):2770–2777CrossRefGoogle Scholar
  13. 13.
    Laron M, Cheng H, Zhang B, Schiffman JS, Tang RA, Frishman LJ (2010) Comparison of multifocal visual evoked potential, standard automated perimetry and optical coherence tomography in assessing visual pathway in multiple sclerosis patients. Mult Scler J 16(4):412–426CrossRefGoogle Scholar
  14. 14.
    Sriram P, Wang C, Yiannikas C, Garrick R, Barnett M, Parratt J, Graham SL, Arvind H, Klistorner A (2014) Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients. PLoS ONE 9(8):e102546CrossRefGoogle Scholar
  15. 15.
    Qiao N, Ye Z, Shou X, Wang Y, Li S, Wang M, Zhao Y (2016) Discrepancy between structural and functional visual recovery in patients after trans-sphenoidal pituitary adenoma resection. Clin Neurol Neurosurg 151:9–17CrossRefGoogle Scholar
  16. 16.
    Hood DC, Odel JG, Zhang X (2000) Tracking the recovery of local optic nerve function after optic neuritis: a multifocal VEP study. Invest Ophthalmol Vis Sci 41(12):4032–4038Google Scholar
  17. 17.
    Qiao N, Zhang Y, Ye Z, Shen M, Shou X, Wang Y, Li S, Wang M, Zhao Y (2015) Comparison of multifocal visual evoked potential, static automated perimetry, and optical coherence tomography findings for assessing visual pathways in patients with pituitary adenomas. Pituitary 18(5):598–603CrossRefGoogle Scholar
  18. 18.
    Jayaraman M, Ambika S, Gandhi RA, Bassi SR, Ravi P, Sen P (2010) Multifocal visual evoked potential recordings in compressive optic neuropathy secondary to pituitary adenoma. Doc Ophthalmol 121(3):197–204CrossRefGoogle Scholar
  19. 19.
    Watanabe K, Shinoda K, Kimura I, Mashima Y, Oguchi Y, Ohde H (2007) Discordance between subjective perimetric visual fields and objective multifocal visual evoked potential-determined visual fields in patients with hemianopsia. Am J Ophthalmol 143(2):295.e293–304.e293CrossRefGoogle Scholar
  20. 20.
    Holder GE, Bullock PR (1989) Visual evoked potentials in the assessment of patients with non-functioning chromophobe adenomas. J Neurol Neurosurg Psychiatry 52(1):31–37CrossRefGoogle Scholar
  21. 21.
    Kerrison JB, Lynn MJ, Baer CA, Newman SA, Biousse V, Newman NJ (2000) Stages of improvement in visual fields after pituitary tumor resection. Am J Ophthalmol 130(6):813–820CrossRefGoogle Scholar
  22. 22.
    Anik I, Anik Y, Koc K, Ceylan S, Genc H, Altintas O, Ozdamar D, Ceylan DB (2011) Evaluation of early visual recovery in pituitary macroadenomas after endoscopic endonasal transphenoidal surgery: quantitative assessment with diffusion tensor imaging (DTI). Acta Neurochir 153(4):831–842CrossRefGoogle Scholar
  23. 23.
    Barzaghi LR, Medone M, Losa M, Bianchi S, Giovanelli M, Mortini P (2012) Prognostic factors of visual field improvement after trans-sphenoidal approach for pituitary macroadenomas: review of the literature and analysis by quantitative method. Neurosurg Rev 35(3):369–379CrossRefGoogle Scholar
  24. 24.
    Thotakura AK, Patibandla MR, Panigrahi MK, Addagada GC (2017) Predictors of visual outcome with transsphenoidal excision of pituitary adenomas having suprasellar extension: a prospective series of 100 cases and brief review of the literature. Asian J Neurosurg 12(1):1CrossRefGoogle Scholar
  25. 25.
    Yu F-F, Chen L-L, Su Y-H, Huo L-H, Lin X-X, Liao R-D (2015) Factors influencing improvement of visual field after trans-sphenoidal resection of pituitary macroadenomas: a retrospective cohort study. Int J Ophthalmol 8(6):1224Google Scholar
  26. 26.
    Ahmed AH, Giri J, Kashyap R, Singh B, Dong Y, Kilickaya O, Erwin PJ, Murad MH, Pickering BW (2015) Outcome of adverse events and medical errors in the intensive care unit: a systematic review and meta-analysis. Am J Med Qual 30(1):23–30CrossRefGoogle Scholar
  27. 27.
    Zhan R, Ma Z, Wang D, Li X (2015) Pure endoscopic endonasal transsphenoidal approach for nonfunctioning pituitary adenomas in the elderly: surgical outcomes and complications in 158 patients. World Neurosurg 84(6):1572–1578CrossRefGoogle Scholar
  28. 28.
    Danesh-Meyer HV, Wong A, Papchenko T, Matheos K, Stylli S, Nichols A, Frampton C, Daniell M, Savino PJ, Kaye AH (2015) Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci 22(7):1098–1104CrossRefGoogle Scholar
  29. 29.
    Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, Tilikete C, Bernard M, Vighetto A (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147(1):64.e62–70.e62CrossRefGoogle Scholar
  30. 30.
    Moon CH, Hwang SC, Ohn Y-H, Park TK (2011) The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci 52(11):7966–7973CrossRefGoogle Scholar
  31. 31.
    Lachowicz E, Lubiński W (2018) The importance of the electrophysiological tests in the early diagnosis of ganglion cells and/or optic nerve dysfunction coexisting with pituitary adenoma: an overview. Doc Ophthalmol 137(3):193–202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Taghvaei
    • 1
  • Seyed Mousa Sadrehosseini
    • 2
  • Nima Ostadrahimi
    • 1
  • Payam Sarraf
    • 3
  • Mehdi Zeinalizadeh
    • 1
    • 4
    Email author
  1. 1.Department of Neurological Surgery, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
  2. 2.Department of Otolaryngology-Head and Neck Surgery, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
  3. 3.Department of Neurology, Iranian Centre of Neurological Research, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
  4. 4.Pituitary Clinic, Brain and Spinal Injury Research Center (BASIR), Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran

Personalised recommendations