Advertisement

Pituitary

, Volume 21, Issue 5, pp 515–523 | Cite as

Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression

  • Richard J. Blanch
  • Jonathan A. Micieli
  • Nelson M. Oyesiku
  • Nancy J. Newman
  • Valérie Biousse
Article
  • 225 Downloads

Abstract

Purpose

To report patients with sellar tumors and chiasmal compression with normal visual fields, who demonstrate damage to the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) on optical coherence tomography (OCT).

Methods

Seven patients with sellar tumors causing mass effect on the optic chiasm without definite visual field defect, but abnormal GCC are described. GCC/RNFL analyses using Cirrus-OCT were classified into centiles based on the manufacturer’s reference range.

Results

In seven patients with radiologic compression of the chiasm by a sellar tumor, OCT-GCC thickness detected compressive chiasmopathy before visual defects became apparent on standard automated visual field testing. Without OCT, our patients would have been labelled as having normal visual function and no evidence of compressive chiasmopathy. With only OCT-RNFL analysis, 3/7 patients would still have been labelled as having no compression of the anterior visual pathways.

Conclusions

These patients show that OCT-GCC analysis is more sensitive than visual field testing with standard automated perimetry in the detection of compressive chiasmopathy or optic neuropathy. These cases and previous studies suggest that OCT-GCC analysis may be used in addition to visual field testing to evaluate patients with lesions compressing the chiasm.

Keywords

Pituitary adenoma Sellar mass Chiasmal compression Optic neuropathy Visual field test Optical coherence tomography Ganglion cell complex analysis 

Notes

Funding

This work was supported in part by an unrestricted departmental grant (Department of Ophthalmology) from Research to Prevent Blindness, Inc., New York, and by NIH/NEI core Grant P30-EY006360 (Department of Ophthalmology). Dr. Biousse received research support from NIH/PHS (UL1-RR025008). Dr. Newman is a recipient of the Research to Prevent Blindness Lew R. Wasserman Merit Award.

Compliance with ethical standards

Conflict of interest

No conflicting relationship exists for any author.

Supplementary material

11102_2018_906_MOESM1_ESM.pdf (199 kb)
Supplementary material 1 (PDF 198 KB)
11102_2018_906_MOESM2_ESM.pdf (578 kb)
Supplementary material 2 (PDF 577 KB)
11102_2018_906_MOESM3_ESM.tiff (10.8 mb)
Supplementary material 3 (TIFF 11049 KB)
11102_2018_906_MOESM4_ESM.pdf (433 kb)
Supplementary material 4 (PDF 433 KB)

References

  1. 1.
    Casanueva FF, Barkan AL, Buchfelder M, Klibanski A, Laws ER, Loeffler JS, Melmed S, Mortini P, Wass J, Giustina A (2017) Pituitary society, expert group on pituitary tumors. Criteria for the definition of pituitary tumor centers of excellence (PTCOE): a pituitary society statement. Pituitary 20:489–498CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ryu WHA, Starreveld Y, Burton JM, Liu J, Costello F, Group PS (2017) The utility of magnetic resonance imaging in assessing patients with pituitary tumors compressing the anterior visual pathway. J Neuroophthalmol 37:230–238CrossRefPubMedGoogle Scholar
  3. 3.
    Newman SA, Turbin RE, Bodach ME, Tumialan LM, Oyesiku NM, Litvack Z, Zada G, Patil CG, Aghi MK (2016) Congress of neurological surgeons systematic review and evidence-based guideline on pretreatment ophthalmology evaluation in patients with suspected nonfunctioning pituitary adenomas. Neurosurgery 79:E530–E532CrossRefPubMedGoogle Scholar
  4. 4.
    Kedar S, Ghate D, Corbett JJ (2011) Visual fields in neuro-ophthalmology. Indian J Ophthalmol 59:103–109CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, Vander Hoorn S (2006) Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci 47:4827–4835CrossRefPubMedGoogle Scholar
  6. 6.
    Danesh-Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD (2008) In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 49:1879–1885CrossRefPubMedGoogle Scholar
  7. 7.
    Phal PM, Steward C, Nichols AD, Kokkinos C, Desmond PM, Danesh-Meyer H, Sufaro YZ, Kaye AH, Moffat BA (2016) Assessment of optic pathway structure and function in patients with compression of the optic chiasm: a correlation with optical coherence tomography. Invest Ophthalmol Vis Sci 57:3884–3890CrossRefPubMedGoogle Scholar
  8. 8.
    Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, Tilikete C, Bernard M, Vighetto A (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147:64–70 e62CrossRefPubMedGoogle Scholar
  9. 9.
    Loo JL, Tian J, Miller NR, Subramanian PS (2013) Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas. Br J Ophthalmol 97:1455–1458CrossRefPubMedGoogle Scholar
  10. 10.
    Monteiro ML, Hokazono K, Fernandes DB, Costa-Cunha LV, Sousa RM, Raza AS, Wang DL, Hood DC (2014) Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Invest Ophthalmol Vis Sci 55:3328–3336CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Danesh-Meyer HV, Wong A, Papchenko T, Matheos K, Stylli S, Nichols A, Frampton C, Daniell M, Savino PJ, Kaye AH (2015) Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci 22:1098–1104CrossRefPubMedGoogle Scholar
  12. 12.
    Johansson C, Lindblom B (2009) The role of optical coherence tomography in the detection of pituitary adenoma. Acta Ophthalmol 87:776–779CrossRefPubMedGoogle Scholar
  13. 13.
    Tieger MG, Hedges TR III, Ho J, Erlich-Malona NK, Vuong LN, Athappilly GK, Mendoza-Santiesteban CE (2017) Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuroophthalmol 37:7–12CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yum HR, Park SH, Park HY, Shin SY (2016) Macular ganglion cell analysis determined by cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS ONE 11:e0153064CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Monteiro ML, Costa-Cunha LV, Cunha LP, Malta RF (2010) Correlation between macular and retinal nerve fibre layer Fourier-domain OCT measurements and visual field loss in chiasmal compression. Eye 24:1382–1390CrossRefPubMedGoogle Scholar
  16. 16.
    Akashi A, Kanamori A, Ueda K, Matsumoto Y, Yamada Y, Nakamura M (2014) The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Invest Ophthalmol Vis Sci 55:4667–4672CrossRefPubMedGoogle Scholar
  17. 17.
    Moon CH, Hwang SC, Ohn YH, Park TK (2011) The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci 52:7966–7973CrossRefPubMedGoogle Scholar
  18. 18.
    Horton JC (2017) Invited commentary: ganglion cell complex measurement in compressive optic neuropathy. J Neuroophthalmol 37:13–15CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jeong AR, Kim EY, Kim NR (2016) Preferential ganglion cell loss in the nasal hemiretina in patients with pituitary tumor. J Neuroophthalmol 36:152–155CrossRefPubMedGoogle Scholar
  20. 20.
    Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21CrossRefPubMedGoogle Scholar
  21. 21.
    Vuong LN, Hedges TR III (2017) Ganglion cell layer complex measurements in compressive optic neuropathy. Curr Opin Ophthalmol 28:573–578CrossRefPubMedGoogle Scholar
  22. 22.
    Zehnder S, Wildberger H, Hanson JVM, Lukas S, Pelz S, Landau K, Wichmann W, Gerth-Kahlert C (2018) Retinal ganglion cell topography in patients with visual pathway pathology. J Neuroophthalmol 38:172–178CrossRefPubMedGoogle Scholar
  23. 23.
    Azuara-Blanco A, Banister K, Boachie C, McMeekin P, Gray J, Burr J, Bourne R, Garway-Heath D, Batterbury M, Hernández R, McPherson G, Ramsay C, Cook J (2016) Automated imaging technologies for the diagnosis of glaucoma: a comparative diagnostic study for the evaluation of the diagnostic accuracy, performance as triage tests and cost-effectiveness (GATE study). Health Technol Assess 20:1–168CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41:741–748PubMedGoogle Scholar
  25. 25.
    Ferreras A, Polo V, Larrosa JM, Pablo LE, Pajarin AB, Pueyo V, Honrubia FM (2007) Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? J Glaucoma 16:372–383CrossRefPubMedGoogle Scholar
  26. 26.
    Wall M, Neahring RK, Woodward KR (2002) Sensitivity and specificity of frequency doubling perimetry in neuro-ophthalmic disorders: a comparison with conventional automated perimetry. Invest Ophthalmol Vis Sci 43:1277–1283PubMedGoogle Scholar
  27. 27.
    Kim KE, Jeoung JW, Kim DM, Ahn SJ, Park KH, Kim SH (2015) Long-term follow-up in preperimetric open-angle glaucoma: progression rates and associated factors. Am J Ophthalmol 159:160–168CrossRefPubMedGoogle Scholar
  28. 28.
    Chen JJ, Kardon RH (2016) Avoiding clinical misinterpretation and artifacts of optical coherence tomography analysis of the optic nerve, retinal nerve fiber layer, and ganglion cell layer. J Neuroophthalmol 36:417–438CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Richard J. Blanch
    • 1
    • 2
    • 3
  • Jonathan A. Micieli
    • 1
  • Nelson M. Oyesiku
    • 4
  • Nancy J. Newman
    • 1
    • 4
    • 5
  • Valérie Biousse
    • 1
    • 5
  1. 1.Department of OphthalmologyEmory University School of MedicineAtlantaUSA
  2. 2.Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
  3. 3.Academic Department of Military Surgery and TraumaRoyal Centre for Defence MedicineBirminghamUK
  4. 4.Department of NeurosurgeryEmory University School of MedicineAtlantaUSA
  5. 5.Department of NeurologyEmory University School of MedicineAtlantaUSA

Personalised recommendations