Advertisement

Botrytis species as biocatalysts

  • Cristina Pinedo
  • Javier Moraga
  • Isidro G. Collado
  • Josefina AleuEmail author
Article
  • 38 Downloads

Abstract

The search for new biocatalysts is increasing significantly in recent years, especially to obtain novel derivatives with improved properties for new drugs, agrochemicals or fragrances which are difficult to obtain using conventional methods. Fungi are traditionally the most frequently studied cell systems and from among the fungi used in biotransformations, Botrytis species stand out for being able to metabolize a wide variety of bioactive compounds. This review covers from the year 2000 up to December 2018 and reports on the application of Botrytis species as biocatalysts.

Keywords

Biotransformation Botrytis Metabolism Phytopathogenic fungus 

Notes

References

  1. Abrunhosa L, Serra R, Venâncio A (2002) Biodegradation of ochratoxin A by fungi isolated from grapes. J Agric Food Chem 50:7493–7496.  https://doi.org/10.1021/jf025747i CrossRefPubMedGoogle Scholar
  2. Ahmed SA, Mesbah MK, Youssef DT, Khalifa SI (2014) Microbial production of 1α-hydroxyvitamin D3 from vitamin D3. Nat Prod Res 28:444–448.  https://doi.org/10.1080/14786419.2013.872104 CrossRefPubMedGoogle Scholar
  3. Aleu J, Collado IG (2001) Biotransformations by Botrytis species. J Mol Catal B Enzym 13:77–93.  https://doi.org/10.1016/S1381-1177(00)00232-0 CrossRefGoogle Scholar
  4. Aleu J, Hanson JR, Hernández Galán R, Collado IG (2001) Biotransformation of the fungistatic sesquiterpenoids patchoulol, ginsenol, cedrol and globulol by Botrytis cinerea. J Mol Catal B Enzym 11:329–334.  https://doi.org/10.1016/S1381-1177(00)00014-X CrossRefGoogle Scholar
  5. Aleu J, Hernández-Galán R, Collado IG (2002) Biotransformation of the fungistatic sesquiterpenoid isoprobotryan-9α-ol by Botrytis cinerea. J Mol Catal B Enzym 16:249–253.  https://doi.org/10.1016/S1381-1177(01)00069-8 CrossRefGoogle Scholar
  6. Anioł M, Huszcza E (2005) Biotransformation of 6,7-epoxygeraniol by fungi. Appl Microbiol Biotechnol 68:311–315.  https://doi.org/10.1007/s00253-004-1886-x CrossRefPubMedGoogle Scholar
  7. Arnone A, Bava A, Alemani S et al (2006) Microbial transformation of 10-deacetylbaccatin III (10-DAB) by Curvularia lunata and Trametes hirsuta. J Mol Catal B Enzym 42:95–98.  https://doi.org/10.1016/j.molcatb.2006.07.006 CrossRefGoogle Scholar
  8. Ascari J, Boaventura MAD, Takahashi JA et al (2011) Biotransformation of bioactive isocaryolanes by Botrytis cinerea. J Nat Prod 74:1707–1712.  https://doi.org/10.1021/np1009465 CrossRefPubMedGoogle Scholar
  9. Ascari J, Boaventura MAD, Takahashi JA et al (2013) Phytotoxic activity and metabolism of Botrytis cinerea and structure–activity relationships of isocaryolane derivatives. J Nat Prod 76:1016–1024.  https://doi.org/10.1021/np3009013 CrossRefPubMedGoogle Scholar
  10. Barth T, Aleu J, Pupo MT et al (2013) HPLC analysis of midodrine and desglymidodrine in culture medium: evaluation of static and shaken conditions on the biotransformation by fungi. J Chromatogr Sci 51:460–467.  https://doi.org/10.1093/chromsci/bms163 CrossRefPubMedGoogle Scholar
  11. Bhatti HN, Khera RA (2012) Biological transformations of steroidal compounds: a review. Steroids 77:1267–1290.  https://doi.org/10.1016/j.steroids.2012.07.018 CrossRefPubMedGoogle Scholar
  12. Boari A, Ciasca B, Pineda-Martos R et al (2016) Parasitic weed management by using strigolactone-degrading fungi. Pest Manag Sci 72:2043–2047.  https://doi.org/10.1002/ps.4226 CrossRefPubMedGoogle Scholar
  13. Bordjiba O, Steiman R, Kadri M et al (2001) Removal of herbicides from liquid media by fungi isolated from a contaminated soil. J Environ Qual 30:418–426.  https://doi.org/10.2134/jeq2001.302418x CrossRefPubMedGoogle Scholar
  14. Borges KB, Durán-Patrón R, Sánchez AJM et al (2011) Fast HPLC analysis of omeprazole, 5-hydroxyomeprazole and omeprazole sulfone in liquid culture medium using a monolithic column for application in biotransformation studies with fungi. J Braz Chem Soc 22:1140–1149.  https://doi.org/10.1590/S0103-50532011000600020 CrossRefGoogle Scholar
  15. Botubol-Ares JM, Durán-Peña MJ, Macías-Sánchez AJ et al (2014) Exploring mutasynthesis to increase structural diversity in the synthesis of highly oxygenated polyketide lactones. Org Biomol Chem 12:5304–5310.  https://doi.org/10.1039/c4ob00717d CrossRefPubMedGoogle Scholar
  16. Bustillo AJ, Aleu J, Hernández-Galán R, Collado IG (2003a) Biotransformation of the fungistatic compound (R)-(+)-1-(4′-chlorophenyl)propan-1-ol by Botrytis cinerea. J Mol Catal B Enzym 21:267–271.  https://doi.org/10.1016/S1381-1177(02)00231-X CrossRefGoogle Scholar
  17. Bustillo AJ, García-Pajón CM, Aleu J et al (2003b) Studies on biotransformation of (±)-1-(4′-chlorophenyl)-2-phenylethanol. Tetrahedron Asymmetry 14:3755–3760.  https://doi.org/10.1016/j.tetasy.2003.08.026 CrossRefGoogle Scholar
  18. Cichewicz RH, Kouzi SA, Hamann MT (2000) Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea. J Nat Prod 63:29–33.  https://doi.org/10.1021/np990266n CrossRefPubMedGoogle Scholar
  19. Colmenares AJ, Aleu J, Durán-Patrón R et al (2002) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28:997–1005.  https://doi.org/10.1023/A:1015209817830 CrossRefPubMedGoogle Scholar
  20. Daoubi M, Deligeorgopoulou A, Macías-Sánchez AJ et al (2005a) Antifungal activity and biotransformation of diisophorone by Botrytis cinerea. J Agric Food Chem 53:6035–6039.  https://doi.org/10.1021/jf050600n CrossRefPubMedGoogle Scholar
  21. Daoubi M, Hernández-Galán R, Benharref A, Collado IG (2005b) Screening study of lead compounds for natural product-based fungicides: antifungal activity and biotransformation of 6α,7α-dihydroxy-β-himachalene by Botrytis cinerea. J Agric Food Chem 53:6673–6677.  https://doi.org/10.1021/jf050697d CrossRefPubMedGoogle Scholar
  22. Daoubi M, Durán-Patrón R, Hernández-Galán R et al (2006) The role of botrydienediol in the biodegradation of the sesquiterpenoid phytotoxin botrydial by Botrytis cinerea. Tetrahedron 62:8256–8261.  https://doi.org/10.1016/j.tet.2006.06.064 CrossRefGoogle Scholar
  23. Deligeorgopoulou A, Macías-Sánchez AJ, Mobbs DJ et al (2004) Structure-activity relationships in the fungistatic activity against Botrytis cinerea of clovanes modified on ring C. J Nat Prod 67:793–798.  https://doi.org/10.1021/np030404f CrossRefPubMedGoogle Scholar
  24. Durán-Patrón R, Aleu J, Hernández-Galán R, Collado IG (2000) Biotransformation of (4E,8R)-caryophyll-4(5)-en-8-ol by Botrytis cinerea. J Nat Prod 63:44–47.  https://doi.org/10.1021/np990296q CrossRefPubMedGoogle Scholar
  25. Durán-Patrón R, Colmenares AJ, Hernández-Galán R et al (2001) Some key metabolic intermediates in the biosynthesis of botrydial and related compounds. Tetrahedron 57:1929–1933.  https://doi.org/10.1016/S0040-4020(01)00016-3 CrossRefGoogle Scholar
  26. Durán-Patrón R, Cantoral JM, Hernández-Galán R et al (2004) The biodegradation of the phytotoxic metabolite botrydial by its parent organism, Botrytis cinerea. J Chem Res.  https://doi.org/10.3184/0308234041423583 CrossRefGoogle Scholar
  27. Elad Y, Pertot I, Cotes Prado AM, Stewart A (2016) Plant Hosts of Botrytis spp. In: Fillinger S, Elad Y (eds) Botrytis: the fungus, the pathogen and its management in agricultural systems. Springer International Publishing, Cham, pp 413–486CrossRefGoogle Scholar
  28. Farooq A, Tahara S (2000a) Biotransformation of two cytotoxic terpenes, α-santonin and sclareol by Botrytis cinerea. Z Naturforsch Sect C J Biosci 55:713–717.  https://doi.org/10.1515/znc-2000-9-1008 CrossRefGoogle Scholar
  29. Farooq A, Tahara S (2000b) Biotransformation of testosterone and pregnenolone catalyzed by the fungus Botrytis cinerea. J Nat Prod 63:489–491.  https://doi.org/10.1021/np990520b CrossRefPubMedGoogle Scholar
  30. Farooq A, Choudhary MI et al (2002a) Detoxification of terpinolene by plant pathogenic fungus Botrytis cinerea. Z Naturforsch C 57:863–866.  https://doi.org/10.1515/znc-2002-9-1018 CrossRefPubMedGoogle Scholar
  31. Farooq A, Choudhary MI, Tahara S et al (2002b) The microbial oxidation of (−)-β-pinene by Botrytis cinerea. Z Naturforsch C 57:686–690.  https://doi.org/10.1515/znc-2002-7-823 CrossRefPubMedGoogle Scholar
  32. Farooq A, Tahara S, Choudhary MI et al (2002c) Biotransformation of (−)-α-pinene by Botrytis cinerea. Z Naturforsch Sect C J Biosci 57:303–306.  https://doi.org/10.1515/znc-2002-3-418 CrossRefGoogle Scholar
  33. Geweely N, Ouf SA (2011) Enhancement of fungal degradation of starch based plastic polymer by laser-induced plasma. Afr J Microbiol Res 5:3273–3281.  https://doi.org/10.5897/AJMR11.366 CrossRefGoogle Scholar
  34. Gliszczyńska A, Wawrzeńczyk C (2008) Oxidative biotransformation of farnesol and 10,11-epoxyfarnesol by fungal strains. J Mol Catal B Enzym 52–53:40–48.  https://doi.org/10.1016/J.MOLCATB.2007.11.004 CrossRefGoogle Scholar
  35. Gliszczyńska A, Łysek A, Janeczko T et al (2011) Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites. Bioorg Med Chem 19:2464–2469.  https://doi.org/10.1016/j.bmc.2011.01.062 CrossRefPubMedGoogle Scholar
  36. Grabarczyk M (2012) Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system. Molecules 17:9741–9753.  https://doi.org/10.3390/molecules17089741 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Grabarczyk M, Białonska A (2010) Biotransformations of bicyclic trimethylcyclohexane chloro-, bromo-and iodolactones using fungal strains. Biocatal Biotransform 28:408–414.  https://doi.org/10.3109/10242422.2010.538688 CrossRefGoogle Scholar
  38. Grabarczyk M, Mączka W, Wińska K et al (2014) The new halolactones and hydroxylactone with trimethylcyclohexene ring obtained through combined chemical and microbial processes. J Mol Catal B Enzym 102:195–203.  https://doi.org/10.1016/j.molcatb.2014.02.012 CrossRefGoogle Scholar
  39. Grabarczyk M, Wińska K, Maczka W et al (2015) Lactones with methylcyclohexane systems obtained by chemical and microbiological methods and their antimicrobial activity. Molecules 20:3335–3353.  https://doi.org/10.3390/molecules20023335 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Grabarczyk M, Wińska K, Mączka W et al (2016) Synthesis, biotransformation and biological activity of halolactones obtained from β-ionone. Tetrahedron 72:637–644.  https://doi.org/10.1016/j.tet.2015.12.005 CrossRefGoogle Scholar
  41. Grotowska AK, Wawrzeńczyk C (2002) Lactones 13: biotransformation of iodolactones. J Mol Catal B Enzym 19–20:203–208.  https://doi.org/10.1016/S1381-1177(02)00168-6 CrossRefGoogle Scholar
  42. Grudniewska A, Gniłka R, Wawrzeńczyk C (2010) Enantioselectivity of hydroxylation of racemic piperitone by fungi. Chirality 22:929–935.  https://doi.org/10.1002/chir.20862 CrossRefPubMedGoogle Scholar
  43. Huszcza E, Dmochowska-Gładysz J (2003) Transformations of testosterone and related steroids by Botrytis cinerea. Phytochemistry 62:155–158.  https://doi.org/10.1016/S0031-9422(02)00490-9 CrossRefPubMedGoogle Scholar
  44. İşcan G, Kırımer N, Demirci F et al (2012) Biotransformation of (−)-(R)-α-phellandrene: antimicrobial activity of its major metabolite. Chem Biodivers 9:1525–1532.  https://doi.org/10.1002/cbdv.201100283 CrossRefPubMedGoogle Scholar
  45. Kovačec E, Regvar M, van Elteren JT et al (2017) Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea. Chemosphere 180:178–185.  https://doi.org/10.1016/j.chemosphere.2017.04.022 CrossRefPubMedGoogle Scholar
  46. Kuban M, Öngen G, Bedir E (2010) Biotransformation of cycloastragenol by Cunninghamella blakesleeana NRRL 1369 resulting in a novel framework. Org Lett 12:4252–4255.  https://doi.org/10.1021/ol101642a CrossRefPubMedGoogle Scholar
  47. Kumari GNK, Masilamani S, Ganesh MR, Aravind S (2003) Microbial transformation of zaluzanin-D. Phytochemistry 62:1101–1104.  https://doi.org/10.1016/S0031-9422(02)00667-2 CrossRefPubMedGoogle Scholar
  48. Ma X-C, Wu L-J, Guo D-A (2006) Microbial transformation of dehydrocostuslactone by Mucor polymorphosporus. J Asian Nat Prod Res 8:713–718.  https://doi.org/10.1080/10286020500246709 CrossRefPubMedGoogle Scholar
  49. Maggi L, Mazzoleni V, Fumi MD, Salinas MR (2008) Transformation ability of fungi isolated from cork and grape to produce 2,4,6-trichloroanisole from 2,4,6-trichlorophenol. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:265–269.  https://doi.org/10.1080/02652030701522991 CrossRefPubMedGoogle Scholar
  50. Marecik R, Króliczak P, Czaczyk K et al (2008) Atrazine degradation by aerobic microorganisms isolated from the rhizosphere of sweet flag (Acorus calamus L.). Biodegradation 19:293–301.  https://doi.org/10.1007/s10532-007-9135-5 CrossRefPubMedGoogle Scholar
  51. Martínez-Ramírez JA, Strien J, Walther G, Peters FT (2016) Search for fungi-specific metabolites of four model drugs in postmortem blood as potential indicators of postmortem fungal metabolism. Forensic Sci Int 262:173–178.  https://doi.org/10.1016/j.forsciint.2016.03.006 CrossRefPubMedGoogle Scholar
  52. Mendoza L, Sepúlveda C, Melo R, Cotoras M (2015) Characterization of the antifungal activity against Botrytis cinerea of sclareol and 13-epi-sclareol, two labdane type diterpenoids. J Chil Chem Soc 60:3024–3028.  https://doi.org/10.4067/S0717-97072015000300010 CrossRefGoogle Scholar
  53. Mirata M-A, Wüst M, Mosandl A et al (2006) Lilac aldehydes and lilac alcohols as metabolic by-products of fungal linalool biotransformation. Dev Food Sci 43:121–124CrossRefGoogle Scholar
  54. Mirata M-A, Wüst M, Mosandl A, Schrader J (2008) Fungal biotransformation of (±)-linalool. J Agric Food Chem 56:3287–3296.  https://doi.org/10.1021/jf800099h CrossRefPubMedGoogle Scholar
  55. Moraga J, Dalmais B, Izquierdo-Bueno I et al (2016) Genetic and molecular basis of botrydial biosynthesis: connecting cytochrome P450-encoding genes to biosynthetic intermediates. ACS Chem Biol.  https://doi.org/10.1021/acschembio.6b00581 CrossRefPubMedGoogle Scholar
  56. Munafo JP, Gianfagna TJ (2011) Antifungal activity and fungal metabolism of steroidal glycosides of Easter lily (Lilium longiflorum Thunb.) by the plant pathogenic fungus, Botrytis cinerea. J Agric Food Chem 59:5945–5954.  https://doi.org/10.1021/jf200093q CrossRefPubMedGoogle Scholar
  57. Myung K, Manthey JA, Narciso JA (2012) Biotransformations of 6′,7′-dihydroxybergamottin and 6′,7′-epoxybergamottin by the citrus-pathogenic fungi diminish cytochrome P450 3A4 inhibitory activity. Bioorgan Med Chem Lett 22:2279–2282.  https://doi.org/10.1016/j.bmcl.2012.01.081 CrossRefGoogle Scholar
  58. Núñez YO, Salabarria IS, Collado IG, Hernández-Galán R (2006) The antifungal activity of widdrol and its biotransformation by Colletotrichum gloeosporioides (penz.) Penz. & Sacc. and Botrytis cinerea Pers.: Fr. J Agric Food Chem 54:7517–7521.  https://doi.org/10.1021/jf061436m CrossRefPubMedGoogle Scholar
  59. Olejniczak T, Gawroński J, Wawrzeńczyk C (2001) Lactones. 6. Microbial lactonization of γ, δ-epoxy esters. Chirality 13:302–307.  https://doi.org/10.1002/chir.1035 CrossRefPubMedGoogle Scholar
  60. Pedras MSC, Hossain S, Snitynsky RB (2011) Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite. Phytochemistry 72:199–206.  https://doi.org/10.1016/j.phytochem.2010.11.018 CrossRefPubMedGoogle Scholar
  61. Pinedo-Rivilla C, Aleu J, Collado IG (2007) Enantiomeric oxidation of organic sulfides by the filamentous fungi Botrytis cinerea, Eutypa lata and Trichoderma viride. J Mol Catal B Enzym 49:18–23.  https://doi.org/10.1016/j.molcatb.2007.07.001 CrossRefGoogle Scholar
  62. Pinedo-Rivilla C, Cafêu MC, Casatejada JA et al (2009) Asymmetric microbial reduction of ketones: absolute configuration of trans-4-ethyl-1-(1S-hydroxyethyl)cyclohexanol. Tetrahedron Asymmetry 20:2666–2672.  https://doi.org/10.1016/j.tetasy.2009.11.001 CrossRefGoogle Scholar
  63. Pinedo-Rivilla C, Aleu J, Grande Benito M, Collado IG (2010) Biocatalytic preparation and absolute configuration of enantiomerically pure fungistatic anti-2-benzylindane derivatives. Study of the detoxification mechanism by Botrytis cinerea. Org Biomol Chem 8:3784–3789.  https://doi.org/10.1039/c003938a CrossRefPubMedGoogle Scholar
  64. Pinedo-Rivilla C, Bustillo AJ, Hernández-Galán R et al (2011) Asymmetric preparation of antifungal 1-(4′-chlorophenyl)-1-cyclopropyl methanol and 1-(4′-chlorophenyl)-2-phenylethanol. Study of the detoxification mechanism by Botrytis cinerea. J Mol Catal B Enzym 70:61–66.  https://doi.org/10.1016/j.molcatb.2011.02.005 CrossRefGoogle Scholar
  65. Pinedo-Rivilla C, Collado IG, Aleu J (2018) Metabolism of antifungal thiochroman-4-ones by Trichoderma viride and Botrytis cinerea. J Nat Prod 81:1036–1040.  https://doi.org/10.1021/acs.jnatprod.7b00298 CrossRefPubMedGoogle Scholar
  66. Silva EO, Ruano-González A, dos Santos RA et al (2016) Antifungal and cytotoxic assessment of lapachol derivatives produced by fungal biotransformation. Nat Prod Commun 11:95–98PubMedGoogle Scholar
  67. van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253.  https://doi.org/10.1016/j.tplants.2006.03.005 CrossRefPubMedGoogle Scholar
  68. Williamson B, Tudzynski B, Tudzynski P, van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580.  https://doi.org/10.1111/j.1364-3703.2007.00417.x CrossRefPubMedGoogle Scholar
  69. Zhao X, Wang J, Li J et al (2009) Highly selective biotransformation of ginsenoside Rb1to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol 36:721–726.  https://doi.org/10.1007/s10295-009-0542-y CrossRefPubMedGoogle Scholar
  70. Zhu H, Zhang L, Ren Y et al (2011) Microbial transformation of cnidilin and identification of its metabolites. Chin J Pharm 42:336–339Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of SciencesUniversity of CádizPuerto RealSpain

Personalised recommendations