Advertisement

Is there a secondary/specialized metabolism in the genus Cuscuta and which is the role of the host plant?

  • Isvett Josefina Flores-Sánchez
  • Ariadna Garza-OrtizEmail author
Article
  • 6 Downloads

Abstract

The parasitic plants from the genus Cuscuta have been studied from different perspectives, such as their phytochemistry, pharmacology, taxonomy, as weeds, and as a model plant for plant-plant interactions. This review attempts to discuss the host plants’ influence on the phytochemistry and pharmacology of parasitic plants like Cuscuta from the evidence that has been published until recent years in specialized literature and which has not been addressed in detail. Also, the relationship between haustorium development from the parasitic plant and its attachment to the host plant vascular system is discussed and related to the phytochemical and pharmacological information available. In addition, the genus Cuscuta’s main applications description in patents is also explored. Finally, some important recommendations are suggested for further studies in Cuscuta or any other parasitic plant. This state-of-the art about the genus Cuscuta can be a valuable source of organized information for those researchers developing projects in a great variety of aspects related to this genus.

Keywords

Cuscuta Parasitic plants Host plant Patents Phytochemistry Secondary/specialized metabolism 

Abbreviations

ABA

Abscisic acid

ABC

ATP-binding cassette

CSVd

Chrysanthemum stunt viroid

GC–MS

Gas chromatography–mass spectrometry

GFP

Green fluorescent protein

HGT

Horizontal gene transfer

HLB

Huanglongbing

HPLC–MS

High-performance liquid chromatography–mass spectrometry

HSVd

Hop stunt viroid

N6P

Nucleophilic attack six-bladed β-propeller

PAT

Phosphinothricin acetyl transferase

PHYP30

Peach rosette phytoplasma

PVYN

Potato virus Y strain N

STR-like

Strictosidine synthase-like

Notes

Acknowledgements

AGO is grateful for the support received via the 2017 NPTC-SEP call for the development of this work. AGO and IJFS want to express their gratitude for the contribution made by Prof. Rafael Ibarra-Contreras from Universidad Nacional Autónoma de México for the language revision.

Supplementary material

11101_2019_9649_MOESM1_ESM.pptx (3.1 mb)
Supplementary material 1 (PPTX 3130 kb)

References

  1. Abu-Lafi S, Makhamra S, Rayan I et al (2018) Sesamin from Cuscuta palaestina natura plant extracts: directions for new prospective applications. PLoS ONE 13:e0195707PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ader D, Fiinnessy JJ, Li Z et al (2016) Methods and compositions for weed control. US Patent 9422558B2Google Scholar
  3. Adler LS (2002) Host effects on herbivory and pollination in a hemiparasitic plant. Ecology 83:2700–2710CrossRefGoogle Scholar
  4. Agarwal RR (1936) Chemical examination of Cuscuta reflexa, Roxb. Part IV. Isolation of a new yellow flavone colouring matter from seeds. J Indian Chem Soc 13:531–536Google Scholar
  5. Agarwal RR, Dutt S (1935) Chemical examination of Cuscuta reflexa. J Indian Chem Soc 12:384Google Scholar
  6. Ahmed HM, Yeh JY, Tang YC et al (2014) Molecular screening of Chinese medicinal plants for progestogenic and anti-progestogenic activity. J Biosci 39:453–461PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ahmad A, Tandon S, Xuan TD et al (2017) A review on phytoconstituents and biological activities of Cuscuta species. Biomed Pharmacother 92:772–795PubMedCrossRefPubMedCentralGoogle Scholar
  8. Aistova EV, Bezborodov VG (2017) Weevils belonging to the genus Smicronyx Schönherr, 1843 (Coleoptera, Curculionidae) affecting dodders (Cuscuta Linnaeus, 1753) in the Russian Far East. Russ J Biol Inv 8:184–188CrossRefGoogle Scholar
  9. Alamgeer Niazi SG, Uttra AM et al (2017) Appraisal of anti-arthritic and nephroprotective potential of Cuscuta reflexa. Pharm Biol 55:792–798PubMedCentralCrossRefGoogle Scholar
  10. Albert M, Belastegui-Macadam X, Bleischwitz M et al (2008) Cuscuta spp.: parasitic plants in the spotlight of plant physiology, economy and ecology. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 69. Springer-Verlag, Berlin, pp 267–277CrossRefGoogle Scholar
  11. Ali SR, Haque S, Mudassar et al (2017) Cytotoxicity and chromosomal aberrations induced by methanolic extract of Cuscuta reflexa and its pure compounds on meristematic cells of Allium species. Pak J Pharm Sci 30:521–529PubMedPubMedCentralGoogle Scholar
  12. Al-Sultany F, Al-Saadi AH, Al-Husainy IM (2018) Evaluated the up-regulation in gene expression of hepatic insulin gene and hepatic insulin receptor gene in type 1 diabetic rats treated with Cuscuta chinensis Lam. J Univ Babylon Pure Appl Sci 26:75–93CrossRefGoogle Scholar
  13. An HJ, Yang GS (2015) Pharmaceutical composition for preventing or treating prostatic hyperplasia and preparation method thereof. KR Patent 101523586B1Google Scholar
  14. Angeles Alvarez PG, Cardoso Tapias Ceccanti G (2016) Use of an herbicidal composition for controlling parasitic plants. US Patent 9474268B2Google Scholar
  15. Anis E, Mustafa G, Ahmed S et al (1999) Sterols and sterol glycosides from Cuscuta reflexa. Nat Prod Sci 5:124–126Google Scholar
  16. Anis E, Anis I, Ahmed S et al (2002) α-Glucosidase inhibitory constituents from Cuscuta reflexa. Chem Pharm Bull 50:112–114PubMedCrossRefPubMedCentralGoogle Scholar
  17. Anjum F, Bukhari SA, Shahid M et al (2013) Comparative evaluation of antioxidant potential of parasitic plant collected from different hosts. J Food Process Technol 4:228CrossRefGoogle Scholar
  18. Anjum F, Bukhari SA, Shahid M et al (2014) Exploration of nutraceutical potential of herbal oil formulated from parasitic plant. Afr J Tradt Complement Altern Med 11:78–86CrossRefGoogle Scholar
  19. Arnevik CL, Brinker RJ, Elmore G et al (2014) Cropping systems for managing weeds. CA Patent 2667099CGoogle Scholar
  20. Bais N, Kakkar A (2014) Phytochemical analysis of methanolic extract of Cuscuta reflexa grown on Cassia fistula and Ficus benghalensis by GC-MS. Int J Pharm Sci Rev Res 25:33–36Google Scholar
  21. Bao X, Wang Z, Fang J et al (2002) Structural features of an immunostimulating and antioxidant acidic polysaccharide from the seeds of Cuscuta chinensis. Planta Med 68:237–243PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bäumel P, Lurz-Gresser G, Veen G et al (1991) Uptake of host-plant alkaloids by parasitic Cuscuta species. Planta Med 57:A95–A96CrossRefGoogle Scholar
  23. Bäumel P, Witte L, Proksch P et al (1992) Uptake and metabolism of host plant alkaloids by parasiting Cuscuta species. Planta Med Suppl 58:A671CrossRefGoogle Scholar
  24. Bäumel P, Jeschke WD, Witte L et al (1993) Uptake and transport of quinolizidine alkaloids in Cuscuta reflexa parasiting on Lupinus angustifolius. Z Naturforsch 48c:436–443CrossRefGoogle Scholar
  25. Bäumel P, Witte L, Czygan FC et al (1994) Transfer of quinolizidine alkaloids from various host plants of the Fabaceae to parasitizing Cuscuta species. Biochem Syst Ecol 22:647–656CrossRefGoogle Scholar
  26. Begum S, Siddiqui BS, Sultana R et al (1999) Bio-active cardenolides from leaves of Nerium oleander. Phytochemistry 5:435–438CrossRefGoogle Scholar
  27. Behbahani M (2014) Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. PLoS ONE 9:e116049PubMedPubMedCentralCrossRefGoogle Scholar
  28. Behbahani M (2017) Anti-human immunodeficiency virus-1 activities of pratensein and pratensein glycoside from Alhaji maurorum and its parasite Cuscuta kotchiana. Chin J Integr Med.  https://doi.org/10.1007/s11655-017-2820-2 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Bewick TA, Stewart JS, Binning LK et al (1990) Biological control of dodder. US Patent 4815726AGoogle Scholar
  30. Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626–2635PubMedPubMedCentralCrossRefGoogle Scholar
  31. Birschwilks M, Haupt S, Hofius D et al (2006) Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J Exp Bot 57:911–921PubMedCrossRefPubMedCentralGoogle Scholar
  32. Boonsong C, Wright SE (1961) The cardiac glycosides present in mistletoes growing on Nerium oleander. Aust J Chem 14:449–457CrossRefGoogle Scholar
  33. Borole SP, Oswal RJ, Antre RV et al (2011) Evaluation of anti-epileptic activity of Cuscuta reflexa Roxb. Res J Pharm Biol Chem Sci 2:657–663Google Scholar
  34. Bringmann G, Schlauer J, Ruckert M et al (1999) Host-derived acetogenins involved in the incompatible parasitic relationship between Cuscuta reflexa (Convolvulaceae) and Ancistrocladus heyneanus (Ancistrocladaceae). Plant Biol 1:581–584CrossRefGoogle Scholar
  35. Bristow JT (2017) Synergistic herbicidal composition and use thereof. US Patent 9629370B1Google Scholar
  36. Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490PubMedPubMedCentralCrossRefGoogle Scholar
  37. Bungard RA, Ruban AV, Hibberd JM et al (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 96:1135–1139PubMedCrossRefPubMedCentralGoogle Scholar
  38. Capderon M, Fer A, Ozenda P (1985) About an unreported system leading to the expulsion of a parasite- Cuscuta on cotton-plant (Cuscuta lupuliformis Krock on Gossypium-Hirsutum-L). C R Acad Sci III-Vie 300:227–232Google Scholar
  39. Chatterjee U, Chauhan HO, Sanwal GG (1997) Physico-chemical and functional characterization of a high molecular weight carboxymethylcellulase from Cuscuta reflexa. Indian J Biochem Biophys 34:354–364PubMedPubMedCentralGoogle Scholar
  40. Chatterjee D, Sahu RK, Jha AK et al (2011) Evaluation of antitumor activity of Cuscuta reflexa Roxb (Cuscutaceae) against Ehrlich ascites carcinoma in Swiss albino mice. Trop J Pharm Res 10:447–454CrossRefGoogle Scholar
  41. Cheng J, Chen Z (2018) Chinese traditional medicine shampoo suitably used by parturient and preparation method of Chinese traditional medicine shampoo. CN Patent 105687056Google Scholar
  42. Chin MH, Kim SY, Kim HJ et al (2006) Skin composition for improving wrinkles, increasing elasticity, curing wound containing collagen synthesis promoter. KR Patent 100542824B1Google Scholar
  43. Chopra RN, Chopra IC, Handa KL et al (2006) Chopra’s indigenous drugs of India, 2nd edn. Academic Publishers, Kolkata p, p 329Google Scholar
  44. Chou WH (2008) Compositions and methods for prostate and kidney health and disorders, and herbal preparation. US Patent 7465466B2Google Scholar
  45. Cook-Deegan R, Niehaus A (2014) After myriad: genetic testing in the wake of recent Supreme Court decisions about gene patents. Curr Genet Med Rep 2:223–241PubMedPubMedCentralCrossRefGoogle Scholar
  46. Costea M, Nesom GL, Stefanovic S (2006a) Taxonomy of the Cuscuta pentagona complex (Convolvulaceae) in North America. SIDA 22:151–175Google Scholar
  47. Costea M, Nesom GL, Stefanovic S (2006b) Taxonomy of the Cuscuta salina-californica complex (Convolvulaceae). SIDA 22:177–195Google Scholar
  48. Costea M, Nesom GL, Stefanovic S (2006c) Taxonomy of the Cuscuta gronovii and cuscuta umbrosa (Convolvulaceae). SIDA 22:197–207Google Scholar
  49. Costea M, Nesom GL, Stefanovic S (2006d) Taxonomy of the Cuscuta indecora (Convolvulaceae) complex in North America. SIDA 22:209–225Google Scholar
  50. Costea M, Garcia MA, Stefanovic S (2015) A phylogenetically based infrageneric classification of the parasitic plant genus Cuscuta (Dodders, Convolvulaceae). Syst Bot 40:269–285CrossRefGoogle Scholar
  51. Da Silva P, Rahioui I, Laugier C et al (2010) Molecular requirements for the insecticidal activity of the plant peptide pea album 1 subunit b (PA1b). J Biol Chem 285:32689–32694PubMedPubMedCentralCrossRefGoogle Scholar
  52. Damiano JJ (1976) 4-tert-butyl- N-sec-butyl-2,6-dinitroaniline. US Patent 3991116AGoogle Scholar
  53. Dandapani M, Nagarajan S (1989) Isorhamnetin 3-O-neohesperidoside from Cuscuta reflexa. Indian J Chem 28B:606–607Google Scholar
  54. Deng W (2011) Pharmaceutical composition for treating rheumatism, and method of making same. US Patent 8003139B2Google Scholar
  55. Deng J, Yan Y, Li R et al (2017) Composition and preparation for preventing and eliminating Cuscuta plants and applications of composition and preparation. CN Patent 104542615BGoogle Scholar
  56. Dinant S, Bonnemain JL, Girousse C et al (2010) Phloem sap intricacy and interplay with aphid feeding. C R Biol 333:504–515PubMedCrossRefPubMedCentralGoogle Scholar
  57. DNATI (2016) Cuscuta chinensis oral liquid for improving immunity and preparation methods. CN Patent 104305205BGoogle Scholar
  58. Donnapee S, Li J, Yang X et al (2014) Cuscuta chinensis Lam: a systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine. J Ethnopharmacol 157:292–308PubMedCrossRefPubMedCentralGoogle Scholar
  59. Du XM, Kohinata K, Kawasaki T et al (1998) Components of the ether-insoluble resin glycoside-like fraction from Cuscuta chinensis. Phytochemistry 48:843–850PubMedCrossRefPubMedCentralGoogle Scholar
  60. Dun XP, Wang JH, Chen L et al (2007) Activity of the plant peptide aglycin in mammalian systems. FEBS J 274:751–759PubMedCrossRefPubMedCentralGoogle Scholar
  61. Ermin C (2000) Traditional Chinese medicine composition for treatment of female dysgenesis. CN Patent 1057002CGoogle Scholar
  62. Farah AF (2007) Resistance of some plant species to field dodder (Cuscuta campestris Yuncker). Afr Crop Sci Conf Proc 8:413–417Google Scholar
  63. Farah AF (2009) The response of two legume crops (Hyacinth bean and Kidney bean) to the parasitism of field dodder (Cuscuta campestris Yuncker). In: Rubiales D, Westwood J, Alugu A (eds) 10th World Congress on Parasitic Plants Proceedings, Kusadasi, p 87Google Scholar
  64. Farah AF, Ibrahim SM (2014) Anatomical studies on compatibility and incompatibility of some solanaceous plant species to field dodder (Cuscuta campestris Yuncker). Am J Plant Sci 5:2426–2430CrossRefGoogle Scholar
  65. Feng PCC, Brinker RJ (2014) Methods for weed control using plants transformed with dicamba. US Patent 8629328B2Google Scholar
  66. Fiehn O (2003) Metabolic networks of Cucurbita maxima phloem. Phytochemistry 62:875–886PubMedCrossRefPubMedCentralGoogle Scholar
  67. Firoozabadi A, Zarshenas MM, Salehi A et al (2015) Effectiveness of Cuscuta planiflora Ten And Nepeta menthoides Boiss. & Buhse in major depression: a triple-blind randomized controlled trial study. J Evid Based Complement Altern Med 20:94–97CrossRefGoogle Scholar
  68. Furuhashi T, Furuhashi K, Weckwerth W (2011) The parasitic mechanism of the holostemparasitic plant Cuscuta. J Plant Interact 6:207–219CrossRefGoogle Scholar
  69. Garcia MA, Costea M, Kuzmina M et al (2014) Phylogeny, character evolution, and biogeography of Cuscuta (Dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. Am J Bot 101:670–690PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ghazanfari T, Naseri M, Shams J et al (2013) Cytotoxic effects of Cuscuta extract on human cancer cell lines. Food Agric Immunol 24:87–94CrossRefGoogle Scholar
  71. Ghule RS, Venkatnarayanan R, Thakare SP et al (2011) Analgesic activity of Cuscuta campestris Yuncker a parasitic plant grown on Nerium indicum Mill. J Adv Pharm Educ Res 1:45–51Google Scholar
  72. Goldwasser Y, Miryamchik H, Sibony M et al (2012) Dectection of resistant chickpea (Cicer arietinum) genotypes to Cuscuta campestris (field dodder). Weed Res 52:122–130CrossRefGoogle Scholar
  73. Gressel J, Joel DM (2002) Use of glyphosate salts in seed dressing herbicidal compositions. E Patent 1021089B1Google Scholar
  74. Guo H, Li J (2000) Study on constituents of the seed from Cuscuta australis. J Beijing Univ Trad Chin Med 23:20–23Google Scholar
  75. Gupta M, Mazumder UK, Pal DK et al (2003) Onset of puberty and ovarian steroidogenesis following adminstration of methanolic extract of Cuscuta reflexa Roxb. stem and Corchorus olitorius Linn. seed in mice. J Ethnopharmacol 89:55–59PubMedCrossRefPubMedCentralGoogle Scholar
  76. Habib SA, Rahman AAA (1988) Evaluation of some weed extracts against field dodder on alfalfa (Medicago sativa). J Chem Ecol 14:443–452PubMedCrossRefPubMedCentralGoogle Scholar
  77. Haupt S, Oparka KJ, Sauer N et al (2001) Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa. J Exp Bot 52:173–177PubMedCrossRefPubMedCentralGoogle Scholar
  78. He X, Yang W, Ye M et al (2011) Differentiation of Cuscuta chinensis and Cuscuta australis by HPLC-DAD-MS analysis and HPLC-UV quantitation. Planta Med 77:1950–1957PubMedCrossRefPubMedCentralGoogle Scholar
  79. Hicks MA, Barber AE 2nd, Giddings LA et al (2011) The evolution of function in strictosidine synthase-like proteins. Proteins 79:3082–3098PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hicks MA, Barber AE 2nd, Babbit PC (2014) The nucleophilic attack six-bladed β-propeller (N6P) superfamily. In: Orengo CA, Bateman A (eds) Proteins families: relating protein sequence, structure, and function. Wiley Series in protein and peptide science. Wiley, New Jersey, pp 127–158Google Scholar
  81. Holm LR, Doll J, Holm E et al (1997) The obligate parasitic weeds: Cuscuta campestris Yuncker and Cuscuta epithymum L. Murr. World weeds: natural histories and distribution. John Wiley & Sons Inc., New York, pp 249–265Google Scholar
  82. Hong YK, Song SB, Hwang JB et al (2008) Colletotrichum sp. BWC 04-49-3 having weeding efficacy against Cuscuta japonica and Humulus japonicus and suspension prepared using this. KR Patent 100806730B1Google Scholar
  83. Hosford RM (1967) Transmission of plant viruses by dodder. Bot Rev 33:387–406CrossRefGoogle Scholar
  84. Hozumi A, Bera S, Fujiwara D et al (2017) Arabinogalactan proteins accumulate in the cell walls of searching hyphae of stem parasitic plants, Cuscuta campestris and Cuscuta japonica. Plant Cell Physiol 58:1868–1877PubMedCrossRefPubMedCentralGoogle Scholar
  85. Hu C, Ham BK, El-Shabrawi HM et al (2016) Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space. Plant J 87:442–454PubMedCrossRefPubMedCentralGoogle Scholar
  86. Hwang SY (2016) A pharmaceutical composition for improving generative of male and treating infertility. KR Patent 101614431B1Google Scholar
  87. Hwang SY, Kim SW, Bae WJ (2017) Composition for preventing or treating of bladder fibrosis. KR patent 101710115Google Scholar
  88. Ibrahim M, Rehman K, Hussain I et al (2017) Ethnopharmacological investigations of phytochemical constituents isolated from the genus Cuscuta. Crit Rev Eukaryot Gene Expr 27:113–150PubMedCrossRefPubMedCentralGoogle Scholar
  89. Ikan R, Rapaport E, Bergmann ED (1968) The presence of agroclavine in Cuscuta monogyma seeds. Isr J Chem 6:65–67CrossRefGoogle Scholar
  90. Im SK (2011) The health food for improvement of glucosuria using Madisin-materials of plants. KR Patent 101094157B1Google Scholar
  91. Jadhav RB, Anarthe SJ, Surana SJ et al (2005) Host-hemiparasite transfer of the C-glucosyl xanthone mangiferin between Mangifera indica and Dendrophthoe falcata. J Plant Interact 1:171–177CrossRefGoogle Scholar
  92. Jafarian A, Ghannadi A, Mohebi B (2014) Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscura chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells. Res Pharm Sci 9:115–122PubMedPubMedCentralGoogle Scholar
  93. Jeong SH (2007) The manufacture method of nature pack composition having whitening effect. KR Patent 100760670B1Google Scholar
  94. Jiang L, Qu F, Li Z et al (2013) Inter-species protein trafficking endows dodder (Cuscuta pentagona) with a host-specific herbicide-tolerant trait. New Phytol 198:1017–1022PubMedCrossRefPubMedCentralGoogle Scholar
  95. Jian-Hui L, Bo J, Yomg-Ming B et al (2003) Effect of Cuscuta chinensis glycoside on the neuronal differentiation of rat pheochromocytoma PC12 cells. Int J Devl Neurosci 21:277–281CrossRefGoogle Scholar
  96. Johnsen HR, Striberny B, Olsen S et al (2015) Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes. New Phytol 207:805–816PubMedCrossRefPubMedCentralGoogle Scholar
  97. Josse A, Robin JR, Rouillard F (2001) Use of mangiferin or derivatives thereof for cosmetic application. E Patent 0793476B1Google Scholar
  98. Kaiser B, Vogg G, Furst UB et al (2015) Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front Plant Sci 6:45PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kang TH, Hong BN (2017) Composition for preventing or treating hearing loss. US Patent 9694043B2Google Scholar
  100. Kastier P, Krasylenko YA, Martincova M et al (2018) Cytoskeleton in the parasitic plant Cuscuta during germination and prehaustorium formation. Front Plant Sci 9:794PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ke J, Duan R (2013) Effects of flavonoids from semen cuscutae on the hippocampal-hypothalamic-pituitary-ovarian sex hormone receptors in female rats exposed to psychological stress. Clin Exp Obstet Gynecol 40:271–274PubMedPubMedCentralGoogle Scholar
  102. Kelly CK (1990) Plant foraging: a marginal value model and coiling response in Cuscuta subinclusa. Ecology 71:1916–1925CrossRefGoogle Scholar
  103. Khattak NS, Nouroz F, Rahman IU et al (2015) Ethno veterinary uses of medicinal plants of district Karak, Pakistan. J Ethnopharmacol 171:273–279PubMedCrossRefPubMedCentralGoogle Scholar
  104. Kim IS (2017) The manufacturing method of shampoo composition for caring scalp and promoting hair growth and shampoo composition thereof. KR Patent 101743197B1Google Scholar
  105. Kim EK, Dung HN (2011) Composition for whitening containing extract of Cuscuta sinensis as an active ingredient. KR Patent 101079712B1Google Scholar
  106. Kim YH, Choi OS, Baek SH (2012) Manufacturing of abalone pill added with Cheonggukjang, fast-fermented bean paste and fermented oriental medicine materials, its manufacturing method. KR Patent 101208451B1Google Scholar
  107. Kim DI, Jeon SHZ, Lee SB (2013) Composition for preventing or treating postmenopausal syndrome comprising oriental herbal extract. KR Patent 101333090B1Google Scholar
  108. Kim SY, Kong TH, Kim SA (2014) Composition for treating or preventing degenerative brain diseases. KR Patent 101398428B1Google Scholar
  109. Kim JS, Koppula S, Yum MJ et al (2017) Anti-fibrotic effects of Cuscuta chinensis with in vitro hepatic stellate cells and a thioacetamide-induced experimental rat model. Pharm Biol 55:1909–1919PubMedPubMedCentralCrossRefGoogle Scholar
  110. Koca-Caliskan U, Yilmaz I, Taslidere A et al (2018) Cuscuta arvensis Beyr “dodder”: in vivo hepatoprotective effects against acetaminophen-induced hepatotoxicity in rats. J Med Food 21:625–631PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kortt AA, Strike PM, De Jersey J (1989) Amino acid sequence of a crystalline seed albumin (winged bean album-1) from Psophocarpus tetragonolobus (L.) DC. Sequence similarity with Kunitz-type seed inhibitors and 7S storage globulins. Eur J Biochem 181:403–408PubMedCrossRefPubMedCentralGoogle Scholar
  112. Krass DK (1988) Substituted diphenyl ethers. DE Patent 3017795C2Google Scholar
  113. Kruk J, Szymariska (2008) Occurrence of neoxanthin and lutein epoxide cycle in parasitic Cuscuta species. Acta Biochim Pol 55:183–190PubMedPubMedCentralGoogle Scholar
  114. Kuok KY, Ly H (2008) Herbal compositions for prostate conditions. E Patent 1594516B9Google Scholar
  115. Kwon IB, Kim JH (2002) Cuscuta chinensis extract having antioxidative activity. KR Patent 100329828B1Google Scholar
  116. Lanini WT, Kogan M (2005) Biology and management of Cuscuta in crops. Cien Inv Agric 32:127–141CrossRefGoogle Scholar
  117. Lemmetty A, Werkman AW, Soukainen M (2011) First report of hop stunt viroid in greenhouse cucumber in Finland. Plant Dis 95:615PubMedCrossRefPubMedCentralGoogle Scholar
  118. Li Q (2014) Traditional Chinese medicine composition for treating proteinuria. CN Patent 103169894BGoogle Scholar
  119. Li G, Chen Y (1997) Chemical constituents of Cuscuta austrolis R. Br. Zhongguo Zhong Yao Za Zhi 22:548–550PubMedPubMedCentralGoogle Scholar
  120. Li ZG, Jiang B, Bao et al (2006) Protection of semen Cuscuta extracts from apoptosis PC12 cell of induced by 1-methyl-4-phenylpyridinium. Chin Tradit Pat Med 28:219–221Google Scholar
  121. Li J, Hettenhausen C, Sun G et al (2015a) The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination. PLoS ONE 10:e135197Google Scholar
  122. Li J, Yang B, Yan Q et al (2015b) Effects of a native parasitic plant on an exotic invader decrease with increasing host age. AoB Plants 7:plv31CrossRefGoogle Scholar
  123. Liao JC, Chang WT, Lee MS et al (2014) Antinociceptive and anti-inflammatory activities of Cuscuta chinensis seeds in mice. Am J Chin Med 42:223–242PubMedCrossRefPubMedCentralGoogle Scholar
  124. Lin MK, Lee MS, Chang WT et al (2013) Cuscuta sp. extract and method for preparing the same and uses of Cuscuta sp. TW Patent I382845BGoogle Scholar
  125. Liu J, Tian J, Li J et al (2016) The in-capillary DPPH-capillary electrophoresis-the diode array detector combined with reversed-electrode polarity stacking mode for screening and quantifying major antioxidants in Cuscuta chinensis Lam. Electrophoresis 37:1632–1639PubMedCrossRefPubMedCentralGoogle Scholar
  126. Liu ZJ, Wang YL, Li QL et al (2018) Improved antimelanogenesis and antioxidant effects of polysaccharide from Cuscuta chinensis Lam seeds after enzymatic hydrolysis. Braz J Med Biol Res 51:e7256PubMedPubMedCentralGoogle Scholar
  127. Löffler C, Sahm A, Wray V et al (1995) Soluble phenolic constituents from Cuscuta reflexa and Cuscuta platyloba. Biochem Syst Ecol 23:121–128CrossRefGoogle Scholar
  128. Luping Q, Haizhong X, Zhipeng L et al (2007) Chinese medicinal extract for resisting osteoporosis and its preparation. CN Patent 1313111CGoogle Scholar
  129. Mishra JS (2009) Biology and management of Cuscuta species. Indian J Weed Sci 41:1–11Google Scholar
  130. Mishra JS, Moorthy BTS, Gogoi AK (2006) Biology and management of Cuscuta. NRC for Weed Science, Jabalpur (M.P.)Google Scholar
  131. Miyahara K, Du XM, Watanabe M et al (1996) Resin glycosides. XXIII Two novel acylated trisaccharides related to resin glycoside from the seeds of Cuscuta chinensis. Chem Pharm Bull 44:481–485CrossRefGoogle Scholar
  132. Mizutani H, Hanamura A, Osaki M et al (1996) Extract of seed of Cuscuta japonica Choisy. JP Patent 2522943B2Google Scholar
  133. Moradzadeth M, Hosseini A, Rakhshandeh H et al (2018) Cuscuta campestris induces apoptosis by increasing reactive oxygen species generation in human leukemic cells. Avicenna J Phytomed 8:237–245Google Scholar
  134. Mukherjee R, Bordoloi J, Goswami A et al (2008) Carotenoids of dodder (Cuscuta reflexa) grown on hedge, Clerodendrum enermy. Adv Nat Appl Sci 2:99–102Google Scholar
  135. Na DS, Lim GY, Kim SY, et al. (2016) Cosmetic composition containing moisturizing complex for moisturizing the skin. KR Patent 101633811B1Google Scholar
  136. Nair R, Thirupurasundari G (1992) Coumarins and flavonoids from Cuscuta reflexa parasitic on Bougainvillea spectabilis. Fitoterapia 63:381–382Google Scholar
  137. Naz R, Ayub H, Nawaz S et al (2017) Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement Altern Med 17:302PubMedPubMedCentralCrossRefGoogle Scholar
  138. Nisa M, Akbar S, Tariq M et al (1986) Effect of Cuscuta chinensis water extract on 7,12-dimethylbenz[a]anthracene-induced skin papillomas and carcinomas in mice. J Ethnopharmacol 18:21–31PubMedCrossRefPubMedCentralGoogle Scholar
  139. Nyeem MAB, Nabi M, Mannan MA et al (2017) Phytochemistry and ethnopharmacology of parasitic plant Cuscuta reflexa: a review. Int J Acad Res Dev 2:71–75Google Scholar
  140. Olsen S, Krause K (2017) Activity of xyloglucan endotransglucosylases/hydrolases suggests a role during host invasion by the parasitic plant Cuscuta reflexa. PLoS ONE 12:e0176754PubMedPubMedCentralCrossRefGoogle Scholar
  141. Olsen S, Popper ZA, Krause K (2016a) Two sides of the same coin: xyloglucan endotransglucosylases/hydrolases in host infection by the parasitic plant Cuscuta. Plant Signal Behav 11:e1145336PubMedPubMedCentralCrossRefGoogle Scholar
  142. Olsen S, Striberny B, Hollmann J et al (2016b) Getting ready for host invasion: elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiosperm Cuscuta. J Exp Bot 67:695–708PubMedCrossRefPubMedCentralGoogle Scholar
  143. Pal D, Panda C, Sinhababu S et al (2003) Evaluation of psychopharmacological effects of petroleum ether extract of Cuscuta reflexa Roxb. stem in mice. Acta Pol Pharm 60:481–486PubMedPubMedCentralGoogle Scholar
  144. Pal DK, Mandal M, Senthilkumar GP et al (2006) Antibacterial activity of Cuscuta reflexa stem and Corchorus olitorius seed. Fitoterapia 77:589–591PubMedCrossRefPubMedCentralGoogle Scholar
  145. Palmer LJ, Dias DA, Boughton B et al (2014) Metabolite profiling of wheat (Triticum aestivum L.) phloem exudate. Plant Methods 10:27PubMedPubMedCentralCrossRefGoogle Scholar
  146. Pandit S, Chauhan NS, Dixit VK (2008) Effect of Cuscuta reflexa Roxb on androgen-induced alopecia. J Cosmet Dermatol 7:199–204PubMedCrossRefPubMedCentralGoogle Scholar
  147. Paper DH, Franz G (1993) Nerium spp.: in vitro culture and the production of secondary metabolites. In: Bajaj YPS (Ed) Biotechnology in agriculture and forestry. Medicinal and aromatic plants IV, vol 21. Springer, Berlin, pp 233-248CrossRefGoogle Scholar
  148. Park JK, Lee SW, Kim CY et al (2017) A composition comprising an extract of combined crude drugs for treating and preventing PADAM syndrome. KR101714568B1Google Scholar
  149. Parrish SK, Beardmore RA, Herold AE (2014) Herbicide composition comprising herbicide compound in acid form and acidifying agent. US Patent 8759256B2Google Scholar
  150. Patel S, Sharma V, Chauhan NS et al (2014) A study on the extracts of Cuscuta reflexa Roxb. in treatment of cyclophosphamide induced alopecia. Daru 22:7PubMedPubMedCentralCrossRefGoogle Scholar
  151. Paudel P, Satyal P, Maharjan S et al (2014) Volatile analysis and antimicrobial screening of the parasitic plant Cuscuta reflexa Roxb. from Nepal. Nat Prod Res 28:106–110PubMedCrossRefPubMedCentralGoogle Scholar
  152. Pedersen JSD and Jorgensen BI (2004) Methods and cuttings for mass propagation of plant parasites. US Patent 6792715B2Google Scholar
  153. Perveen S, Bukhari IH, Ain QU et al (2013) Antimicrobial, antioxidant and minerals evaluation of Cuscuta europea and Cuscuta reflexa collected from different hosts and exploring their role as functional attribute. Int Res J Pharm App Sci 3:43–49Google Scholar
  154. Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751PubMedCrossRefPubMedCentralGoogle Scholar
  155. Pribylová J, Spak J (2013) Dodder transmission of phytoplasmas. Methods Mol Biol 938:41–46PubMedCrossRefPubMedCentralGoogle Scholar
  156. Qiao J, Bai R, Zhang Y et al (2016) Herbicide for preventing and remaining semen cuscutae. CN Patent 104542609BGoogle Scholar
  157. Qin X, Yang SH, Kepsel AC et al (2008) Evidence for abscisic acid biosynthesis in Cuscuta reflexa, a parasitic plant lacking neoxanthin. Plant Physiol 147:816–822PubMedPubMedCentralCrossRefGoogle Scholar
  158. Qu L, Qu L, Qu L et al (2016) Physiologically multifunctional traditional Chinese medicine compound preparation and preparing method thereof. CN Patent 104840706BGoogle Scholar
  159. Rai DK, Sharma V, Pal K et al (2016) Comparative phytochemical analysis of Cuscuta reflexa Roxb. parasite grown on North India by GC-MS. Trop Plant Res 3:428–433Google Scholar
  160. Raju N, Sakthivel KM, Kannan N et al (2015) Cuscuta chinensis ameliorates immunosuppression and urotoxic effect of cyclophosphamide by regulating cytokines-GM-CSF and TNF-alpha. Appl Biochem Biotechnol 176:742–757PubMedCrossRefPubMedCentralGoogle Scholar
  161. Ranjan A, Ichihashi Y, Farhi M et al (2014) De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol 166:1186–1199PubMedPubMedCentralCrossRefGoogle Scholar
  162. Rath D, Kar DM, Panigrahi SK et al (2016) Antidiabetic effects of Cuscuta reflexa Roxb. in streptozotocin induced diabetic rats. J Ethnopharmacol 192:442–449PubMedCrossRefPubMedCentralGoogle Scholar
  163. Rath D, Panigrahi SK, Kar M et al (2018) Identification of bioactive constituents from different fractions of stems of Cuscuta reflexa Roxb. using GC-MS. Nat Prod Res 32:1977–1981PubMedCrossRefPubMedCentralGoogle Scholar
  164. Raza MA, Mukhtar F, Danish M (2015) Cuscuta reflexa and Carthamus oxyacantha: potent sources of alternative and complimentary drug. Springerplus 4:76PubMedPubMedCentralCrossRefGoogle Scholar
  165. Renmin A (2000) Medical liquor for warming kidney and stimulation of kidney function and preparing method. CN Patent 1050518CGoogle Scholar
  166. Riaz M, Bilal A, Shaiq M et al (2017) Natural products from Cuscuta reflexa Roxb. with antiproliferation activities in HCT116 colorectal cell lines. Nat Prod Res 31:583–587PubMedCrossRefPubMedCentralGoogle Scholar
  167. Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967CrossRefPubMedGoogle Scholar
  168. Saric-Krsmanovic MM, Bozic DM, Radivojevic LM et al (2017) Effect of Cuscuta campestris parasitism on the physiological and anatomical changes in untreated and herbicide-treated sugar beet. J Environ Sci Health B 52:812–816PubMedCrossRefPubMedCentralGoogle Scholar
  169. Sedun F, Wilson CD (2002) Herbicidal fatty acid and maleic hydrazide salt compositions. US Patent 6383985B1Google Scholar
  170. Sepehr MF, Jameie SB, Hajijafari B (2011) The Cuscuta kotschyana effects on breast cancer cells line MCF7. J Med Plant Res 5:6344–6351Google Scholar
  171. Shah A, Bharati KA, Ahmad J et al (2015) New ethnomedicinal claims from Gujjar and Bakerwals tribes of Rajouri and Poonch districts of Jammu and Kashmir, India. J Ethnopharmacol 166:119–128PubMedCrossRefPubMedCentralGoogle Scholar
  172. Shailajan S, Joshi H (2011) Optimized separation and quantification of pharmacologically active markers quercetin, kaempferol, β-sitosterol and lupeol from Cuscuta reflexa Roxb. J Pharm Res 4:1851–1853Google Scholar
  173. Shen H, Ye W, Hong L et al (2005) Influence of the obligate parasite Cuscuta campestris on growth and biomass allocation of its host Mikania micrantha. J Exp Bot 56:1277–1284PubMedCrossRefPubMedCentralGoogle Scholar
  174. Sherman TD, Bowling AJ, Barger TW et al (2008) The vestigial root of dodder (Cuscuta pentagona) seedlings. Int J Plant Sci 169:998–1012CrossRefGoogle Scholar
  175. Shimizu K, Aoki K (2018) Differentiation of vascular elements in haustoria of Cuscuta japonica. Plant Signal Behv 13:e1445935CrossRefGoogle Scholar
  176. Shimizu K, Hozumi A, Aoki K (2018) Organization of vascular cells in the haustorium of the parasitic flowering plant Cuscuta japonica. Plant Cell Physiol 59:715–723PubMedCrossRefPubMedCentralGoogle Scholar
  177. Singh D, Shailajan S (2016) Simultaneous quantification of pharmacologically active markers quercetin, kaempferol, bergenin and gallic acid from Cuscuta campestris Yuncker using HPTLC. Pharm Anal Acta 7:490CrossRefGoogle Scholar
  178. Smith JD, Woldemariam MG, Mescher MC et al (2016) Glucosinolates from host plants influence growth of the parasitic plant Cuscuta gronovii and its susceptibility to aphid feeding. Plant Physiol 172:181–197PubMedPubMedCentralCrossRefGoogle Scholar
  179. Snyder AM, Clark BM, Bungard RA (2005) Light-dependent conversion of carotenoids in the parasitic angiosperm Cuscuta reflexa L. Plant, Cell Environ 28:1326–1333CrossRefGoogle Scholar
  180. Son KJ (2014) A composition comprising extracts of herbal mixture for treating or preventing interstitial cystitis. KR Patent 101348102B1Google Scholar
  181. Song GS, Hwang SH (2013) The way to suppress weed growth using Cuscuta and the way to suppress weed growth using sprout proliferation of Cuscuta. KR Patent 101287310B1Google Scholar
  182. Song J, Xu Y, Liang KE (2014) Menstruation regulating and pregnancy assisting medicine, preparation technology and application of medicine. CN Patent 103071019BGoogle Scholar
  183. Srivastava US, Jaiswal AK, MAMTA (1990) An insect growth regulatory factor in Cuscuta reflexa Roxb. Nat Acad Sci Lett 13:361–363Google Scholar
  184. Srivastava S, Nighojkar A, Kumar A (1995) Purification and characterization of starch phosphorylase from Cuscuta reflexa filaments. Phytochemistry 39:1001–1005CrossRefGoogle Scholar
  185. Stermitz FR (1998) Plant parasites. In: Roberts MF, Wink M (eds) Alkaloids: biochemistry, ecology, and medicinal applications. Springer + Business Media, New York, pp 327–336CrossRefGoogle Scholar
  186. Stöckigt J, Barleben L, Panjikar S et al (2008) 3D-Structure and function of strictosidine synthase-the key enzyme of monoterpenoid indole alkaloid biosynthesis. Plant Physiol Biochem 46:340–355PubMedCrossRefPubMedCentralGoogle Scholar
  187. Stubbs TL, Kennedy AC (2012) Microbial weed control and microbial herbicides. In: Alvarez-Fernandez R (ed) Herbicides—environmental impact studies and management approaches. InTech, Rijeka, Croatia, pp 135–166Google Scholar
  188. Subramanian SS, Nair AGR (1963) Chemical components of Cuscuta reflexa Roxb. Indian J Chem 1:501–552Google Scholar
  189. Subramanian SS, Nair AGR (1964a) Isolation of mannitol from Cuscuta reflexa growing on Santalum album. Indian J Chem 2:81–82Google Scholar
  190. Subramanian SS, Nair AGR (1964b) Isolation of luteolin from Cuscuta reflexa growing on Glycosmis triphylla W. Indian J Chem 2:378Google Scholar
  191. Subramanian SS, Nair AGR (1966) Occurrence of mangiferin in Cuscuta reflexa growing on Mangifera indica. Indian J Chem 4:335–336Google Scholar
  192. Sun L (2012) Point eye mask and preparation method and application thereof. CN Patent 101766695BGoogle Scholar
  193. Sun SL, Gou L, Ren YC et al (2014) Anti-apoptosis effect of polysaccharide isolated from the seeds of Cuscuta chinensis Lam on cardiomyocytes in aging rats. Mol Biol Rep 41:6117–6124PubMedCrossRefPubMedCentralGoogle Scholar
  194. Sun D, Yin J, Sun M et al (2016) Pharmaceutical composition for relieving fatigue and preparation method thereof. E Patent 2666470B1Google Scholar
  195. Tada Y, Sugai M, Furuhashi K (1996) Haustoria of Cuscuta japónica, a holoparasitic flowering plant, are induced by the cooperative effects of far-red light and tactile stimuli. Plant Cell Physiol 37:1049–1053CrossRefGoogle Scholar
  196. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, SunderlandGoogle Scholar
  197. Tanruean K, Kaewnarin K, Suwannarach N et al (2017) Comparative evaluation of phytochemicals, and antidiabetic and antioxidant activities of Cuscuta reflexa grown on different hosts in Northern Thailand. Nat Prod Commun 12:51–54PubMedPubMedCentralGoogle Scholar
  198. Tanruean K, Poolprasert P, Kumla J et al (2019) Bioactive compounds content and their biological properties of acetone extract of Cuscuta reflexa Roxb. grown on various host plants. Nat Prod Res 33:544–547PubMedCrossRefPubMedCentralGoogle Scholar
  199. Tripathi VJ, Yadav SB, Upadhyay AK (2005) A new flavanone, reflexin, from Cuscuta reflexa and its selective sensing of nitric oxide. Appl Biochem Biotechnol 127:63–67PubMedCrossRefPubMedCentralGoogle Scholar
  200. Tsai YC, Lai WC, Du YC et al (2012) Lignan and flavonoid phytoestrogens from seeds of Cuscuta chinensis. J Nat Prod 75:1424CrossRefGoogle Scholar
  201. Tu Y, Wang L, Sun D et al (2016) Semen cuscutae extract as well as preparation method and semen cuscutae granule formula thereof. CN Patent 103933104BGoogle Scholar
  202. Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221PubMedCrossRefPubMedCentralGoogle Scholar
  203. Uddin SJ, Shilpi JA, Middleton M et al (2007) Swarnalin and cis-swarnalin, two new tetrahydrofuran derivatives with free radical scavenging activity, from the aerial parts of Cuscuta reflexa. Nat Prod Res 21:663–668PubMedCrossRefPubMedCentralGoogle Scholar
  204. Umehara K, Nemoto K, Ohkubo T et al (2004) Isolation of a new 15-membered macrocyclic glycolipid lactone, cuscutic resinoside A from the seeds of Cuscuta chinensis: a stimulator of breast cancer cell proliferation. Planta Med 70:299–304PubMedCrossRefPubMedCentralGoogle Scholar
  205. Vaidyanathan L, Thanikachalam D, Sivaswamy LTS (2014) Evaluation of wound healing potency of Cassia auriculate flower extracts using chick embryo wound model. Int J Pharm Sci Rev Res 27:222–227Google Scholar
  206. van Dorst HJM, Peters D (1974) Some biological observations on pale fruit, a viroid-incited disease of cucumber. Neth J Plant Pathol 80:85–96CrossRefGoogle Scholar
  207. The Plant List, Version 1.1. http://www.theplantlist.org/. Accessed June 2018
  208. Vijikumar S, Ramanathan K, Parimala Devi B (2011) Cuscuta reflexa ROXB.-a wonderful micracle plant in ethnomedicine. Indian J Nat Sci 11:676–683Google Scholar
  209. Vurro M, Boari A, Evidente A et al (2009) Natural metabolites for parasitic weed management. Pest Manag Sci 65:566–571PubMedCrossRefPubMedCentralGoogle Scholar
  210. Wang Z, Fang JN, Ge DL et al (2000) Chemical characterization and immunological activities of an acidic polysaccharide isolated from the seeds of Cuscuta chinensis Lam. Acta Pharmacol Sin 21:1136–1140PubMedPubMedCentralGoogle Scholar
  211. Wang J, Feng Z, Kong L et al (2010) Chinese dodder seed extract, its preparation method. Chinese proprietary medicine containing extracts thereof and use thereof, CN Patent, p 1762410BGoogle Scholar
  212. Wang TJ, An J, Chen XH et al (2014) Assessment of Cuscuta chinensis seeds’ effect on melanogenesis: comparison of water and ethanol fractions in vitro and in vivo. J Ethnopharmacol 154:240–248PubMedCrossRefPubMedCentralGoogle Scholar
  213. Weinberg T, Lalazar A, Rubin B (2003) Effects of bleaching herbicides on field dodder (Cuscuta campestris). Weed Sci 51:663–670CrossRefGoogle Scholar
  214. Westwood JH, Charudattan R, Duke SO et al (2018) Weed management in 2050: perspectives on the future of weed science. Weed Sci 66:275–285CrossRefGoogle Scholar
  215. Wink M, Witte L (1984) Turnover and transport of quinolizidine alkaloids. Diurnal fluctuations of lupanine in the phloem sap, leaves and fruit of Lupinus albus L. Planta 161:519–524PubMedCrossRefPubMedCentralGoogle Scholar
  216. Wink M, Witte L (1993) Quinolizidine alkaloids in Genista acanthoclada and its holoparasite, Cuscuta palaestina. J Chem Ecol 19:441–448PubMedCrossRefPubMedCentralGoogle Scholar
  217. Xiang SX, He ZS, Ye Y (2001) Furofuran lignans from Cuscuta chinensis. Chin J Chem 19:282–285CrossRefGoogle Scholar
  218. Xoconostle-Cazares B, Martinez-Navarro AC, Ruiz-Medrano R (2016) Phloem long-distance trafficking of RNAs and proteins. In: Encyclopedia of life sciences (eLS). Wiley, Chichester.  https://doi.org/10.1002/9780470015902.a0021260.pub2
  219. Yadav SB, Tripathi V, Singh RK et al (2000) Antioxidant activity of Cuscuta reflexa stems. Ind J Pharm Sci 62:477–478Google Scholar
  220. Yahara S, Domoto H, Sugimura C et al (1994) An alkaloid and two lignans from Cuscuta chinensis. Phytochemistry 37:1755–1757CrossRefGoogle Scholar
  221. Yamazaki T, Takaoka M, Katoh E et al (2003) A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. Eur J Biochem 270:1269–1276PubMedCrossRefPubMedCentralGoogle Scholar
  222. Yang R (2014) Green compound feed for enhancing piglet constitution. CN Patent Application 103636988AGoogle Scholar
  223. Yang SM, Dowler WM, Schaad NW et al (1998) Method for the control of weeds with weakly virulent or non-virulent plant pathogens. US Patent 5795845AGoogle Scholar
  224. Yang L, Chen Q, Wang F et al (2011) Antiosteoporotic compounds from seeds of Cuscuta chinensis. J Ethnopharmacol 135:553–560PubMedCrossRefPubMedCentralGoogle Scholar
  225. Ye M, Yan Y, Ni X et al (2001) Studies on the chemical constituents of the herba of Cuscuta chinensis. Zhong Yao Cai 24:339–341PubMedPubMedCentralGoogle Scholar
  226. Ye M, Li Y, Yan Y et al (2002a) Determination of flavonoids in Semen Cuscutae by RP-HPLC. J Pharm Biomed Anal 28:621–628PubMedCrossRefPubMedCentralGoogle Scholar
  227. Ye M, Yan YN, Qiao L et al (2002b) Studies on chemical constituents of Cuscuta chinensis. Zhongguo Zhong Yao Za Zhi 27:115–117PubMedPubMedCentralGoogle Scholar
  228. Ye M, Yan Y, Guo DA (2005) Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19:1469–1484PubMedCrossRefPubMedCentralGoogle Scholar
  229. Yen FL, Wu TH, Lim LT et al (2007) Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats. J Ethnopharmacol 111:123–128PubMedCrossRefPubMedCentralGoogle Scholar
  230. Yoshida S, Cui S, Ichichashi Y et al (2016) The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol 67:643–667PubMedCrossRefPubMedCentralGoogle Scholar
  231. Young DC (1995) Glyphosate-sulfuric acid adduct herbicides and use. US Patent 5411944AGoogle Scholar
  232. Zaroug MS, Zahran EAB, Abbasher AA et al (2014) Host range of field dodder (Cuscuta campestris Yuncker) and its impact on onion (Allium cepa L.) cultivars grown in Gezira state Sudan. Int J Agric Sci 4:356–361Google Scholar
  233. Zekry SH, Abo-Elmatty DM, Zayed RA et al (2015) Effect of metabolites isolated from Cuscuta pedicellate on high fat diet-fed rats. Med Chem Res 24:1964–1973CrossRefGoogle Scholar
  234. Zeraati F, Zamani A, Goodarzi MT et al (2010) In vitro cytotoxic effects of Cuscuta chinensis whole extract on human acute lymphoblastic leukemia cell line. Iran J Med Sci 35:310–314Google Scholar
  235. Zhang Y, Fernandez-Aparicio M, Wafula EK et al (2013) Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species. BMC Evol Biol 13:48PubMedPubMedCentralCrossRefGoogle Scholar
  236. Zhang D, Qi J, Yue J et al (2014) Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer. BMC Plant Biol 14:19PubMedPubMedCentralCrossRefGoogle Scholar
  237. Zhao J (2015) Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci 20:576–585PubMedCrossRefPubMedCentralGoogle Scholar
  238. Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15:72–80PubMedCrossRefPubMedCentralGoogle Scholar
  239. Zhong H, Yi M, Lu J et al (2015) Use of a traditional Chinese medicine composition for manufacturing a health food or medicament for preventing and alleviating physical fatigue. US Patent 8986750B2Google Scholar
  240. Zhou LJ, Gabriel DW, Duan YP et al (2007) First report of dodder transmission of Huanglongbing from naturally infected Murraya paniculata to citrus. Plant Dis 91:227PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Químico-BiológicasUniversidad Autónoma de CampecheCampecheMexico

Personalised recommendations