Advertisement

Phytochemistry Reviews

, Volume 18, Issue 5, pp 1277–1298 | Cite as

Role of plant-derived alkaloids against diabetes and diabetes-related complications: a mechanism-based approach

  • Ankit Kumar
  • Sonali Aswal
  • Ruchi Badoni Semwal
  • Ashutosh Chauhan
  • Sunil Kumar Joshi
  • Deepak Kumar SemwalEmail author
Article

Abstract

Diabetes mellitus is a metabolic disorder of multiple etiologies, characterized by chronic hyperglycemia together with the disturbance of carbohydrate, fat, protein metabolism resulting from a defect of insulin secretion, insulin action or both which affects most of the people in both developed and developing countries. Apart from insulin therapy (mainly for type 1 diabetes mellitus), several synthetic drugs are available in the market to treat diabetes, but the treatment with synthetic drugs is costly and the chances of side effects are high. The present work aimed to compile the detailed information about the naturally-occurring alkaloids having an effect against diabetes and diabetes-related complications. A detailed literature survey was conducted to collect information. Different online scientific database such as PubMed, Scopus, and Web of Science were searched together with some relevant books. Since ancient times, plants and their derived products have been used to treat human ailments in various parts of the world where access to modern medicine is limited. About 800 species of medicinal plant have been reported for anti-diabetic effect. A wide range of active constituent derived from plants such as alkaloids, glycosides, terpenoids, steroids, flavonoids, anthocyanidins, resins and saponins have been found active against diabetes. Alkaloids are a class of naturally-occurring chemical compounds, derived from natural sources such as plants, animals, bacteria and fungi. They have a wide range of pharmacological activities such as anti-malarial, anti-asthmatic, anti-cancer, anti-hypertensive, oxytocic, CNS stimulant, muscle relaxant, anti-spasmodic, cholinomimetic, vasodilatory, anti-arrhythmic, analgesic, anti-bacterial and anti-hyperglycemic. The present paper reviews the effect of alkaloids against diabetes and diabetes-related complications such as neuropathy, diabetic ketoacidosis, kidney disease (nephropathy), cardiovascular disease (hypertension), hyperosmolar hyperglycemic nonketotic syndrome, stroke, gastroparesis and eye problems (cataract, keratopathy and retinopathy). Various alkaloids including berberine, boldine and sanguinarine were found potentially effective against different diabetic models. The present work concluded that there are many alkaloidal compounds present in nature which can be used to develop a new promising drug against diabetes and diabetes-related complications.

Keywords

β-Cells regeneration Diabetes mellitus Nephropathy Insulin secretion Retinopathy 

Abbreviations

Col

Collagen

DPP-4

Dipeptidyl peptidase-4

GCLM

Glutamate-cysteine ligase modifier subunit

GK

Glucokinase

GLUT4

Glucose transporter type 4

GPR

G-protein coupled receptor

GPx

Glutathione peroxidase

GSH

Glutathione

GTT

Glucose tolerance test

G6Pase

Glucose-6-phosphatase

HDL

High-density lipoprotein

hnRNP

Heterogeneous nuclear ribonucleoproteins

IL

Interleukin

LDL

Low-density lipoprotein

MDA

Malondialdehyde

MMP

Matrix metalloproteinase

NF-κB

Nuclear factor-κB

NO

Nitric oxide

Nrf2

Nuclear factor erythroid 2-related factor 2

PAS

Periodic acid Schiff

PEPCK

Phosphoenolpyruvate carboxykinase

PPAR-γ

Peroxisome proliferator-activated receptor-gamma

PTP1B

Protein tyrosine phosphatase 1B

SOD

Superoxide dismutase

STZ

Streptozotocin

TBARS

Thiobarbituric acid reactive substances

TGF-β1

Transforming growth factor-beta 1

TNFα

Tumor necrosis factor α

Notes

Authors contributions

DKS conceptualised the work; SA, AK and RBS compiled the literature, drafted the manuscript and equally contributed to this work; AC provided key literature; DKS and SKJ edited and finalised the manuscript.

Funding

This work was financially supported by National Medicinal Plants Board, Ministry of AYUSH, Govt. of India (Grant No. Z.18017/187/CSS/R&D/UK-01/2017-18-NMPB-IV A).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Al-Khateeb E, Hamadi SA, Al-Hakeemi AA, Abu-Taha M, Al-Rawi N (2012) Hypoglycemic effect of trigonelline isolated from Iraqi fenugreek seeds in normal and alloxan-diabetic rabbits. Eur Sci J 8(30):16–24Google Scholar
  2. Aniszewski T (2015) Alkaloids: chemistry, biology, ecology, and applications. Elsevier, AmsterdamGoogle Scholar
  3. Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 49(9):4208–4213CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aschner P, Adler A, Bailey C, Chan JCN, Colagiuri S, Day C, Leiter LA, Sadikot S, Cho NH, Sobngwi E (2017) International diabetes federation. Recommendations for managing type 2 diabetes in primary care. www.idf.org/managing-type2-diabetes
  5. Ayodele OE, Alebiosu CO, Salako BL (2016) Diabetic nephropathy—a review of the natural history, burden, risk factors and treatment. J Natl Med Assoc 96(11):1445–1454Google Scholar
  6. Barnett A (2006) DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract 60(11):1454–1470CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bierer DE, Fort DM, Mendez CD, Luo J, Imbach PA, Dubenko LG, Jolad SD, Gerber RE, Litvak J, Lu Q, Zhang P, Reed MJ, Waldeck N, Bruening RC, Noamesi BK, Hector RF, Carlson TJ, King SR (1998) Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities. J Med Chem 41(6):894–901CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bobkiewicz-Kozłowska T, Dworacka M, Kuczynski S, Abramczyk M, Kolanos R, Wysocka W, Garcia Lopez PM, Winiarska H (2007) Hypoglycaemic effect of quinolizidine alkaloids-lupanine and 2-thionosparteine on non-diabetic and streptozotocin-induced diabetic rats. Eur J Pharmacol 565(1–3):240–244CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bustanji Y, Taha MO, Yousef AM, Al-Bakri AG (2006) Berberine potently inhibits protein tyrosine phosphatase 1B: investigation by docking simulation and experimental validation. J Enzyme Inhib Med Chem 21(2):163–171CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carling D (2004) The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci 29(1):18–24CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cersosimo E, Triplitt C, Solis-Herrera C, Mandarino LJ, DeFronzo RA (2000) Pathogenesis of type 2 diabetes mellitus. In: Feingold KR, Anawalt B, Boyce A et al (eds) Endotext [Internet]. MDText.com Inc, South DartmouthGoogle Scholar
  12. Chandirasegaran G, Elanchezhiyan C, Ghosh K, Sethupathy S (2016) Determination of antidiabetic compounds from Helicteres isora fruits by oral glucose tolerance test. J Appl Pharm Sci 6(2):172–174CrossRefGoogle Scholar
  13. Chen KK (1926) The acute toxicity of ephedrine. J Pharmacol Exp Therapeut 27(1):61–76Google Scholar
  14. Chen QB, Xin XL, Yang Y, Lee SS, Aisa HA (2014) Highly conjugated norditerpenoid and pyrroloquinoline alkaloids with potent PTP1B inhibitory activity from Nigella glandulifera. J Nat Prod 77(4):807–812CrossRefPubMedPubMedCentralGoogle Scholar
  15. Choi J, He N, Sung MK, Yang Y, Yoon S (2011) Sanguinarine is an allosteric activator of AMP-activated protein kinase. Biochem Biophys Res Commun 413(2):259–263CrossRefPubMedPubMedCentralGoogle Scholar
  16. Choi JS, Ali MY, Jung HA, Oh SH, Choi RJ, Kim EJ (2015) Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies. J Ethnopharmacol 171:28–36CrossRefPubMedPubMedCentralGoogle Scholar
  17. Combs AP (2010) Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J Med Chem 53(6):2333–2344CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dhananjayan I, Kathiroli S, Subramani S, Veerasamy V (2017) Ameliorating effect of betanin, a natural chromoalkaloid by modulating hepatic carbohydrate metabolic enzyme activities and glycogen content in streptozotocin-nicotinamide induced experimental rats. Biomed Pharmacother 88:1069–1079CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dinesh Kumar B, Krishnakumar K, Jaganathan SK, Mandal M (2013) Effect of Mangiferin and Mahanimbine on Glucose Utilization in 3T3-L1 cells. Pharmacogn Mag 9(33):72–75CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dineshkumar B, Mitra A, Mahadevappa M (2010) Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves. Int J Phytomed 2(1):22–30Google Scholar
  21. Gao H, Huang YN, Gao B, Li P, Inagaki C, Kawabata J (2008) Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chem 108(3):965–972CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gao Y, Zhang Y, Zhu J, Li B, Li Z, Zhu W, Shi J, Jia Q, Li Y (2015) Recent progress in natural products as DPP-4 inhibitors. Future Med Chem 7(8):1079–1089CrossRefPubMedPubMedCentralGoogle Scholar
  23. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, DeFronzo RA, Einhorn D, Fonseca VA, Garber JR, Garvey WT, Grunberger G, Handelsman Y, Hirsch IB, Jellinger PS, McGill JB, Mechanick JI, Rosenblit PD, Umpierrez GE (2018) Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2018 executive summary. Endocr Pract 24(1):91–120CrossRefPubMedPubMedCentralGoogle Scholar
  24. Geng Y, Lu Z, Huang W, Xu H, Shi J, Xu Z (2013) Bioassay-guided isolation of DPP-4 inhibitory fractions from extracts of submerged cultured of Inonotus obliquus. Molecules 18:1150–1161CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guo W, Zhu H, Wang Z, Chen J-A, Wu J, Zhu Y, Gu X (2017) Novel rhynchophylline analogues as microvascular relaxation agents for the treatment of microvascular dysfunction caused by diabetes. Eur J Med Chem 139:657–664CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gupta MK, Sharma PK (2014) A text book of phrarmacognosy, 3rd edn. Pragati Prakashan, MeerutGoogle Scholar
  27. Hamadi SA (2012) Effect of trigonelline and ethanol extract of Iraqi Fenugreek seeds on oxidative stress in alloxan diabetic rabbits. J Assoc Arab Univ Basic Appl Sci 12(1):23–26Google Scholar
  28. Hernandez-Salinas R, Vielma AZ, Arismendi MN, Boric MP, Sáez JC, Velarde V (2013) Boldine prevents renal alterations in diabetic rats. J Diabetes Res 2013:593672CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hollander P, Pi-Sunyer X, Coniff RF (1997) Acarbose in the treatment of type 1 diabetes. Diabetes Care 20:248–253CrossRefPubMedPubMedCentralGoogle Scholar
  30. Holt RI, Cockram C, Flyvbjerg A, Goldstein BJ (2017) Textbook of diabetes, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  31. Huang H, Xin H, Liu X, Xu Y, Wen D, Zhang Y, Zhu YZ (2012) Novel anti-diabetic effect of SCM-198 via inhibiting the hepatic NF-κB pathway in db/db mice. Biosci Rep 32(2):185–195CrossRefPubMedPubMedCentralGoogle Scholar
  32. Huang L, Yang X, Peng A, Wang H, Lei X, Zheng L, Huang K (2015) Inhibitory effect of leonurine on the formation of advanced glycation end products. Food Funct 6(2):584–589CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jagtap S, Khare P, Mangal P, Kondepudi KK, Bishnoi M, Bhutani KK (2017) Effect of mahanimbine, an alkaloid from curry leaves, on high-fat diet-induced adiposity, insulin resistance, and inflammatory alterations. BioFactors 43:220–231CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jan NU, Ali A, Ahmad B, Iqbal N, Adhikari A, Ali A, Ali S, Jahan A, Ali H, Ali I, Ullah A, Ullah A (2018) Evaluation of antidiabetic potential of steroidal alkaloid of Sarcococca saligna. Biomed Pharmacother 100:461–466CrossRefGoogle Scholar
  35. Jang YY, Song JH, Shin YK, Han ES, Lee CS (2000) Protective effect of boldine on oxidative mitochondrial damage in streptozotocin-induced diabetic rats. Pharmacol Res 42(4):361–371CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jung HA, Yoon NY, Bae HJ, Min BS, Choi JS (2008) Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Arch Pharm Res 31(11):1405–1412CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kalra S (2014) Alpha glucosidase inhibitors. J Pak Med Assoc 64(4):474–476PubMedPubMedCentralGoogle Scholar
  38. Kato A, Yasuko H, Goto H, Hollinshead J, Nash RJ, Adachi I (2009) Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity. Phytomedicine 16(2–3):258–261CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kawakami M, Hirayama A, Tsuchiya K, Ohgawara H, Nakamura M, Umezawa K (2010) Promotion of β-cell differentiation by the alkaloid conophylline in porcine pancreatic endocrine cells. Biomed Pharmacother 64(3):226–231CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kipnis DM (1968) Insulin secretion in diabetes mellitus. Ann Intern Med 69(5):891–901CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kong WJ, Zhang H, Song DQ, Xue R, Zhao W, Wei J, Wang YM, Shan N, Zhou ZX, Yang P, You XF, Li ZR, Si SY, Zhao LX, Pan HN, Jiang JD (2009) Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism 58(1):109–119CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kubo M, Matsuda H, Tokuoka K, Kobayashi Y, Ma S (1994) Studies of anti-cataract drugs from natural sources. I. Effects of a methanolic extract and the alkaloidal components from Corydalis tuber on in vitro aldose reductase activity. Biol Pharm Bull 17(3):458–459CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lau YS, Tian XY, Huang Y, Murugan D, Achike FI, Mustafa MR (2013) Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism. Biochem Pharmacol 85(3):367–375CrossRefPubMedPubMedCentralGoogle Scholar
  44. Liu L, Zhang J, Chen C, Teng J, Wang C, Luo D (2015) Structure and biosynthesis of fumosorinone, a new protein tyrosine phosphatase 1B inhibitor firstly isolated from the entomogenous fungus Isaria fumosorosea. Fungal Genet Biol 81:191–200CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu J, Chen Y, Li J-Y, Luo C, Li J, Chen K-X, Li X-W, Guo Y-W (2018) Function-oriented synthesis of marine phidianidine derivatives as potential PTP1B inhibitors with specific selectivity. Mar Drugs 16(3):1–14Google Scholar
  46. Lopez PMG, de la Mora PG, Wysocka W, Maiztegui B, Alzugaray ME, Del Zotto H, Borelli MI (2004) Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. Eur J Pharmacol 504(1–2):139–142CrossRefGoogle Scholar
  47. Mollataghi A, Coudiere E, Hadi AHA, Mukhtar MR, Awang K, Litaudon M, Ata A (2012) Anti-acetylcholinesterase, anti-α-glucosidase, anti-leishmanial and anti-fungal activities of chemical constituents of Beilschmiedia species. Fitoterapia 83(2):298–302CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nguyen KH, Ta TN, Pham THM, Nguyen QT, Pham HD, Mishra S, Nyomba BG (2012) Nuciferine stimulates insulin secretion from beta cells—an in vitro comparison with glibenclamide. J Ethnopharmacol 142(2):488–495CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nojima H, Kimura I, Chen FJ, Sugihara Y, Haruno M, Kato A, Asano N (1998) Antihyperglycemic effects of N-containing sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii and Castanospermum australe in streptozotocin-diabetic mice. J Nat Prod 61(3):397–400CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ojeda-Montes MJ, Ardid-Ruiz A, Tomas-Hernandez S, Gimeno A, Cereto-Massague A, Beltrán-Debon R, Mulero M, Garcia-Vallvé S, Pujadas G, Valls C (2017) Ephedrine as a lead compound for the development of new DPP-IV inhibitors. Future Med Chem 9(18):2129–2146CrossRefPubMedPubMedCentralGoogle Scholar
  51. Patel AM, Anand IS, Suva MA (2014) Role of protein tyrosine phosphatase-1B inhibitors in type 2 diabetes mellitus. J PharmaSciTech 4(1):1–6Google Scholar
  52. Patel OP, Mishra A, Maurya R, Saini D, Pandey J, Taneja I, Raju KS, Kanojiya S, Shukla SK, Srivastava MN, Wahajuddin M, Tamrakar AK, Srivastava AK, Yadav PP (2016) Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents. J Nat Prod 79(5):1276–1284CrossRefPubMedPubMedCentralGoogle Scholar
  53. Petrash JM (2004) All in the family: aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci 61(7–8):737–749CrossRefPubMedPubMedCentralGoogle Scholar
  54. Raschi E, Parisotto M, Forcesi E, La Placa M, Marchesini G, De Ponti F, Poluzzi E (2017) Adverse events with sodium-glucose co-transporter-2 inhibitors: a global analysis of international spontaneous reporting systems. Nutr Metab Cardiovasc Dis 27(12):1098–1107CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sahajpal NS, Jain SK (2016) Molecular remodeling of the insulin receptor pathway by thiazolidinediones in type 2 diabetes mellitus: a brief review. Protein Pept Lett 23(9):836–847CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sales PM, Souza PM, Simeoni LA, Magalhaes PO, Silveira D (2012) α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci 15(1):141–183CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sasaki T, Li W, Higai K, Koike K (2015) Canthinone alkaloids are novel protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 25(9):1979–1981CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schrijvers BF, De Vriese AS, Flyvbjerg A (2004) From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr Rev 25(6):971–1010CrossRefPubMedPubMedCentralGoogle Scholar
  59. Semwal DK, Rawat U, Semwal R, Singh R, Singh GJP (2010) Anti-hyperglycemic effect of 11-hydroxypalmatine, a palmatine derivative from tubers. J Asian Nat Prod Res 12(2):99–105CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shah SN, Bodhankar SL, Badole SL, Kamble HV, Mohan V (2006) Effect of trigonelline: an active compound from Trigonella foenumgraecum Linn. in alloxan induced diabetes in mice. J Cell Tissue Res 6(1):585–590Google Scholar
  61. Shibano M, Kitagawa S, Kusano G (1997a) Studies on the constituents of Broussonetia species. I. Two new pyrrolidine alkaloids, broussonetines C and D, as β-galactosidase and β-mannosidase inhibitors from Broussonetia kazinoki SIEB. Chem Pharm Bull 45(3):505–508CrossRefGoogle Scholar
  62. Shibano M, Kitagawa S, Nakamura S, Akazawa N, Kusano G (1997b) Studies on the constituents of Broussonetia species. II. Six new pyrrolidine alkaloids, broussonetine A, B, E, F and Broussonetinine A and B, as inhibitors of glycosidases from Broussonetia kazinoki SIEB. Chem Pharm Bull 45(4):700–705CrossRefPubMedPubMedCentralGoogle Scholar
  63. Shibano M, Tsukamoto D, Masuda A, Tanaka Y, Kusano G (2001) Two new pyrrolidine alkaloids, radicamines A and B, as inhibitors of α-glucosidase from Lobelia chinensis LOUR. Chem Pharm Bull 49(10):1362–1365CrossRefPubMedPubMedCentralGoogle Scholar
  64. Su S, Cao M, Wu G, Long Z, Cheng X, Fan J, Xu Z, Su H, Hao Y, Li G, Peng J, Li S, Wang X (2018) Hordenine protects against hyperglycemia-associated renal complications in streptozotocin-induced diabetic mice. Biomed Pharmacother 104:315–324CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sun JE, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, Xu ZH (2008) Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol 118:7–13CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tabopda TK, Ngoupayo J, Liu J, Mitaine-Offer AC, Tanoli SAK, Khan SN, Ali MS, Ngadjui BT, Tsamo E, Lacaille-Dubois MA, Luu B (2008) Bioactive aristolactams from Piper umbellatum. Phytochemistry 69(8):1726–1731CrossRefPubMedPubMedCentralGoogle Scholar
  67. Takada K, Uehara T, Nakao Y, Matsunaga S, van Soest RW, Fusetani N (2004) Schulzeines A–C, new α-glucosidase inhibitors from the marine sponge Penares schulzei. J Am Chem Soc 126(1):187–193CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tang D, Chen QB, Xin XL, Aisa HA (2017) Anti-diabetic effect of three new norditerpenoid alkaloids in vitro and potential mechanism via PI3K/Akt signaling pathway. Biomed Pharmacother 87:145–152CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tattersal R (1993) Alpha glucosidase inhibition as an adjunct to the treatment of type 1 diabetes. Diabet Med 10:688–693CrossRefGoogle Scholar
  70. Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah SC, Mustafa MR, Awang K (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules 18(8):9770–9784CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, Awang K (2015) Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia 102:182–188CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tiwari N, Thakur AK, Kumar V, Dey A, Kumar V (2014) Therapeutic targets for diabetes mellitus: an update. Clin Pharmacol Biopharm 3:117CrossRefGoogle Scholar
  73. Tsutsumi T, Kobayashi S, Liu YY, Kontani H (2003) Anti-hyperglycemic effect of fangchinoline isolated from Stephania tetrandra Radix in streptozotocin-diabetic mice. Biol Pharm Bull 26(3):313–317CrossRefPubMedPubMedCentralGoogle Scholar
  74. van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C (2005) α-Glucosidase inhibitors for patients with type 2 diabetes. Diabetes Care 28(1):154–163CrossRefPubMedPubMedCentralGoogle Scholar
  75. Veeresham C, Rama Rao A, Asres K (2014) Aldose reductase inhibitors of plant origin. Phytother Res 28(3):317–333CrossRefPubMedPubMedCentralGoogle Scholar
  76. Vujicic B, Turk T, Crncevic-Orlic Z, Dordevic G, Racki S (2012) Diabetic nephropathy. In: Oguntibeju O (ed) Pathophysiology and complications of diabetes mellitus. IntechOpen, London, pp 71–96Google Scholar
  77. Wang ZQ, Lu FE, Leng SH, Fang XS, Chen G, Wang ZS, Dong LP, Yan ZQ (2008) Facilitating effects of berberine on rat pancreatic islets through modulating hepatic nuclear factor 4 alpha expression and glucokinase activity. World J Gastroenterol 14(39):6004–6011CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wang LJ, Jiang B, Wu N, Wang SY, Shi DY (2015) Small molecules as potent protein tyrosine phosphatase 1B (PTP1B) inhibitors documented in patents from 2009 to 2013. Mini Rev Med Chem 15(2):104–122CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wansi JD, Wandji J, Meva’a LM, Waffo AFK, Ranjit R, Khan SN, Asma A, Iqbal CM, Lallemand MC, Tillequin F, Tanee ZF (2006) α-Glucosidase inhibitory and antioxidant acridone alkaloids from the stem bark of Oriciopsis glaberrima E NGL.(Rutaceae). Chem Pharm Bull 54(3):292–296CrossRefPubMedPubMedCentralGoogle Scholar
  80. Watson RT, Kanzaki M, Pessin JE (2004) Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 25(2):177–204CrossRefPubMedPubMedCentralGoogle Scholar
  81. Winder WA, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 277(1):E1–E10CrossRefGoogle Scholar
  82. Xia X, Yan J, Shen Y, Tang K, Yin J, Zhang Y, Yang D, Liang H, Ye J, Weng J (2011) Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE 6(2):e16556CrossRefPubMedPubMedCentralGoogle Scholar
  83. Xiu LM, Miura AB, Yamamoto K, Kobayashi T, Song QH, Kitamura H, Cyong JC (2001) Pancreatic islet regeneration by ephedrine in mice with streptozotocin-induced diabetes. Am J Chin Med 29(03n04):493–500CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yao X-G, Chen F, Li P, Quan L, Chen J, Yu L, Ding H, Li C, Chen L, Gao Z, Wan P, Hu L, Jiang H, Shen X (2013) Natural product vindoline stimulates insulin secretion and efficiently ameliorates glucose homeostasis in diabetic murine models. J Ethnopharmacol 150(1):285–297CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yin J, Gao Z, Liu D, Liu Z, Ye J (2008) Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 294(1):E148–E156CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zajoncova L, Kosina P, Vicar J, Ulrichova J, Pec P (2005) Study of the inhibition of α-amylase by the benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine. J Enzyme Inhib Med Chem 20(3):261–267CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, Huo L, Wang M, Hong J, Wu P, Ren G, Ning G (2008) Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 93(7):2559–2565CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhou J, Zhou S, Tang J, Zhang K, Guang L, Huang Y, Xu Y, Ying Y, Zhang L, Li D (2009) Protective effect of berberine on beta cells in streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats. Eur J Pharmacol 606(1–3):262–268CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research and Development Centre, Faculty of Biomedical SciencesUttarakhand Ayurved UniversityHarrawala, DehradunIndia
  2. 2.Department of ChemistryPt. Lalit Mohan Sharma Government Postgraduate CollegeRishikeshIndia
  3. 3.Department of Biotechnology, Faculty of Biomedical SciencesUttarakhand Ayurved UniversityHarrawala, DehradunIndia
  4. 4.Uttarakhand Ayurved UniversityHarrawala, DehradunIndia
  5. 5.Department of Phytochemistry, Faculty of Biomedical SciencesUttarakhand Ayurved UniversityHarrawala, DehradunIndia

Personalised recommendations