C-prenylated flavonoids with potential cytotoxic activity against solid tumor cell lines

  • Lenka Molčanová
  • Dominika Janošíková
  • Stefano Dall´Acqua
  • Karel ŠmejkalEmail author


Natural products of plant origin or their semisynthetic derivatives acting as chemopreventive or chemotherapeutic agents for various types of cancer are under study as potential new anticancer drugs. Within the huge class of plant phenolic secondary metabolites, the subclass of prenylated flavonoids is quite rich in structural variety and pharmacological activity. One of their most prominent characteristics is their potential as anticancer agents. The aim of this review is to summarize the available data about the cytotoxicity of C-prenylated flavonoids on solid tumor cell lines as shown by in vitro assays. Prenylated flavonoids are divided into groups according to the prenyl substitution of the flavonoid skeleton. Within these flavonoid groups, attention is focused on flavones, flavonols, flavanones, dihydroflavonols, and isoflavonoids. This search is limited to compounds that do not contain heteroatoms other than oxygen, and is focused only on aglycones. Attempts to compare the bioassay results obtained from the search reveal complications caused by the use of different assay protocols, different ranges of concentration studied, different times the cell cultures were exposed to the compounds being assayed, and in some cases the lack of a proper positive control. In vivo assays of the anticancer activity of prenylated flavonoids on solid tumors were also reviewed. Despite the difficulties in comparing them, it is clear that the C-prenylated flavonoid class possesses significant bioactivity, suggesting a potential role for such compounds in anticancer drug discovery and development.

Graphic abstract


Cancer Cytotoxicity Flavonoid Geranyl Prenyl 


Supplementary material

11101_2019_9641_MOESM1_ESM.docx (287 kb)
Supplementary material 1 (DOCX 286 kb)
11101_2019_9641_MOESM2_ESM.docx (203 kb)
Supplementary material 2 (DOCX 203 kb)


  1. Agarwal G, Carcache PJB, Addo EM et al (2019) Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv.
  2. Allsopp P, Possemiers S, Campbell D et al (2013) A comparison of the anticancer properties of isoxanthohumol and 8-prenylnaringenin using in vitro models of colon cancer. BioFactors 39:441–447CrossRefPubMedGoogle Scholar
  3. Almeida JRGS, Barbosa-Filho JM, Cabral AGS et al (2005) Diploflavone, a new flavonoid from Diplotropis ferruginea Benth. (Fabaceae). J Braz Chem Soc 16:1454–1457CrossRefGoogle Scholar
  4. An HK, Kim KS, Lee JW et al (2014) Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells. PLoS ONE 9:e114607CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anand P, Kunnumakara AB, Sundaram C et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116CrossRefPubMedPubMedCentralGoogle Scholar
  6. Andrade-Carrera B, Clares B, Noé V et al (2017) Cytotoxic evaluation of (2S)-5,7-dihydroxy-6-prenylflavanone derivatives loaded PLGA nanoparticles against MiaPaCa-2 cells. Molecules 22:E1553CrossRefPubMedGoogle Scholar
  7. Anioł M, Świderska A, Stompor M et al (2012) Antiproliferative activity and synthesis of 8-prenylnaringenin derivatives by demethylation of 7-O- and 4´-O-substituted isoxanthohumols. Med Chem Res 21:4230–4238CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arai MA, Uchida K, Sadhu SK et al (2015) Hedgehog inhibitors from Artocarpus communis and Hyptis suaveolens. Bioorg Med Chem 23:4150–4154CrossRefPubMedGoogle Scholar
  9. Arung ET, Shimizu K, Kondo R (2006) Inhibitory effect of isoprenoid-substituted flavonoids isolated from Artocarpus heterophyllus on melanin biosynthesis. Planta Med 72:847–850CrossRefPubMedGoogle Scholar
  10. Arung ET, Shimizu K, Kondo R (2007) Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells. Chem Biodivers 4:2166–2171CrossRefPubMedGoogle Scholar
  11. Arung ET, Shimizu K, Tanaka H et al (2010a) 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus. Fitoterapia 81:640–643CrossRefPubMedGoogle Scholar
  12. Arung ET, Wicaksono BD, Handoko YA et al (2010b) Cytotoxic effect of artocarpin on T47D cells. J Nat Med 64:423–429CrossRefPubMedGoogle Scholar
  13. Arung ET, Yoshikawa K, Shimizu K et al (2010c) Isoprenoid-substituted flavonoids from wood of Artocarpus heterophyllus on B16 melanoma cells: cytotoxicity and structural criteria. Fitoterapia 81:120–123CrossRefPubMedGoogle Scholar
  14. Barron D, Ibrahim RK (1996) Isoprenylated flavonoids—a survey. Phytochemistry 43:921–982CrossRefGoogle Scholar
  15. Basmadjian C, Zhao Q, Bentouhami E et al (2014) Cancer wars: natural products strike back. Front Chem 2:20CrossRefPubMedPubMedCentralGoogle Scholar
  16. Blanquer-Rosselló MM, Oliver J, Valle A et al (2013) Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression. J Cell Biochem 114:2785–2794CrossRefPubMedGoogle Scholar
  17. Blatt CTT, Chávez D, Chai H et al (2002) Cytotoxic flavonoids from the stem bark of Lonchocarpus aff. fluvialis. Phytother Res 16:320–325CrossRefPubMedGoogle Scholar
  18. Boonyaketgoson S, Rukachaisirikul V, Phongpaichit S et al (2017) Cytotoxic arylbenzofuran and stilbene derivatives from the twigs of Artocarpus heterophyllus. Tetrahedron Lett 58:1585–1589CrossRefGoogle Scholar
  19. Botta B, Vitali A, Menendez P et al (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12:713–739CrossRefGoogle Scholar
  20. Bourjot M, Apel C, Martin MT et al (2010) Antiplasmodial, antitrypanosomal, and cytotoxic activities of prenylated flavonoids isolated from the stem bark of Artocarpus styracifolius. Planta Med 76:1600–1604CrossRefPubMedGoogle Scholar
  21. Brezáni V, Šmejkal K, Hošek J et al (2018) Anti-inflammatory natural prenylated phenolic compounds-potential lead substances. Curr Med Chem 25:1094–1159CrossRefPubMedGoogle Scholar
  22. Brunelli E, Pinton G, Bellini P et al (2009a) Flavonoid-induced autophagy in hormone sensitive breast cancer cells. Fitoterapia 80:327–332CrossRefPubMedGoogle Scholar
  23. Brunelli E, Pinton G, Chianale F et al (2009b) 8-Prenylnaringenin inhibits epidermal growth factor-induced MCF-7 breast cancer cell proliferation by targeting phosphatidylinositol-3-OH kinase activity. J Steroid Biochem Mol Biol 113:163–170CrossRefPubMedGoogle Scholar
  24. Bunel V, Ouedraogo M, Nguyen AT et al (2014) Methods applied to the in vitro primary toxicology testing of natural products: state of the art, strengths, and limits. Planta Med 80:1210–1226CrossRefPubMedGoogle Scholar
  25. Busch C, Noor S, Leischner C et al (2015) Anti-proliferative activity of hop-derived prenylflavonoids against human cancer cell lines. Wien Med Wochenschr 165:258–261CrossRefPubMedGoogle Scholar
  26. Çevik D, Yılmazgöz ŞB, Kan Y et al (2018) Bioactivity-guided isolation of cytotoxic secondary metabolites from the roots of Glycyrrhiza glabra and elucidation of their mechanisms of action. Ind Crops Prod 124:389–396CrossRefGoogle Scholar
  27. Cheenpracha S, Karalai C, Ponglimanont C et al (2009) Candenatenins A–F, phenolic compounds from the heartwood of Dalbergia candenatensis. J Nat Prod 72:1395–1398CrossRefPubMedGoogle Scholar
  28. Chen CN, Wu CL, Shy HS et al (2003) Cytotoxic prenylflavanones from Taiwanese propolis. J Nat Prod 66:503–506CrossRefPubMedGoogle Scholar
  29. Chen CN, Wu CL, Lin JK (2004) Propolin C from propolis induces apoptosis through activating caspases, Bid and cytochrome c release in human melanoma cells. Biochem Pharmacol 67:53–66CrossRefPubMedGoogle Scholar
  30. Chen CN, Wu CL, Lin JK (2007) Apoptosis of human melanoma cells induced by the novel compounds propolin A and propolin B from Taiwenese propolis. Cancer Lett 245:218–231CrossRefPubMedGoogle Scholar
  31. Chen CN, Hsiao CJ, Lee SS et al (2012) Chemical modification and anticancer effect of prenylated flavanones from Taiwanese propolis. Nat Prod Res 26:116–124CrossRefPubMedGoogle Scholar
  32. Chen X, Mukwaya E, Wong MS et al (2014) A systematic review on biological activities of prenylated flavonoids. Pharm Biol 52:655–660CrossRefPubMedGoogle Scholar
  33. Chin YW, Mdee LK, Mbwambo ZH et al (2006) Prenylated flavonoids from the root bark of Berchemia discolor, a Tanzanian medicinal plant. J Nat Prod 69:1649–1652CrossRefPubMedPubMedCentralGoogle Scholar
  34. Christian BA, Grever MR, Byrd JC et al (2009) Flavopiridol in chronic lymphocytic leukemia: a concise review. Clin Lymphoma Myeloma 9(Suppl 3):S179–S185CrossRefPubMedGoogle Scholar
  35. Cidade HM, Nacimento MSJ, Pinto MMM et al (2001) Artelastocarpin and carpelastofuran, two new flavones, and cytotoxicities of prenyl flavonoids from Artocarpus elasticus against three cancer cell lines. Planta Med 67:867–870CrossRefPubMedGoogle Scholar
  36. Cottiglia F, Casu L, Bonsignore L et al (2005) New cytotoxic prenylated isoflavonoids from Bituminaria morisiana. Planta Med 71:254–260CrossRefPubMedGoogle Scholar
  37. Cursino LMC, Lima NM, Murillo R et al (2016) Isolation of flavonoids from Deguelia duckeana and their effect on cellular viability, AMPK, eEF2, eIF2 and eIF4E. Molecules 21:E192CrossRefPubMedGoogle Scholar
  38. Dai Y, Zhang S, Liu DC et al (2018) Enzymatic biosynthesis of novel bavachin glucosides via Bacillus UDP-glycosyltransferase. Phytochem Lett 23:9–14CrossRefGoogle Scholar
  39. Daskiewicz JB, Depeint F, Viornery L et al (2005) Effects of flavonoids on cell proliferation and caspase activation in a human colonic cell line HT29: an SAR study. J Med Chem 48:2790–2804CrossRefPubMedGoogle Scholar
  40. Dat NT, Binh PTX, Quynh LTP et al (2010) Cytotoxic prenylated flavonoids from Morus alba. Fitoterapia 81:1224–1227CrossRefPubMedGoogle Scholar
  41. Delmulle L, Bellahcéne A, Dhooge W et al (2006) Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine 13:732–734CrossRefPubMedGoogle Scholar
  42. Delmulle L, Berghe TV, Keukeleire DD et al (2008) Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytother Res 22:197–203CrossRefPubMedGoogle Scholar
  43. Di X, Wang S, Wang B et al (2013) New phenolic compounds from the twigs of Artocarpus heterophyllus. Drug Discov Ther 7:24–28CrossRefPubMedGoogle Scholar
  44. Ding P, Chen D, Bastow KF et al (2004) Cytotoxic isoprenylated flavonoids from the roots of Sophora flavescens. Helv Chim Acta 87:2574–2580CrossRefGoogle Scholar
  45. Dong X, Zhou X, Jing H et al (2011) Pharmacophore identification, virtual screening and biological evaluation of prenylated flavonoids derivatives as PKB/Akt1 inhibitors. Eur J Med Chem 46:5949–5958CrossRefPubMedGoogle Scholar
  46. Dzoyem JP, Tchamgoue J, Tchouankeu JC et al (2018) Antibacterial activity and cytotoxicity of flavonoids compounds isolated from Pseudarthria hookeri Wight & Arn. (Fabaceae). S African J Bot 114:100–103CrossRefGoogle Scholar
  47. Edziri H, Mastouri M, Mahjoub MA et al (2012) Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules 17:7284–7293CrossRefPubMedPubMedCentralGoogle Scholar
  48. El-Gamal AA, Al-Massarani SM, Abdel-Mageed WM et al (2017) Prenylated flavonoids from Commiphora opobalsamum stem bark. Phytochemistry 141:80–85CrossRefPubMedGoogle Scholar
  49. Elingold I, Isollabella MP, Casanova MB et al (2008) Mitochondrial toxicity and antioxidant activity of a prenylated flavonoid isolated from Dalea elegans. Chem Biol Interact 171:294–305CrossRefPubMedGoogle Scholar
  50. Escobar Z, Solano C, Larsson R et al (2014) Synthesis of poinsettifolin A. Tetrahedron 70:9052–9056CrossRefGoogle Scholar
  51. Fang N, Casida JE (1999) New bioactive flavonoids and stilbenes in cubé resin insecticide. J Nat Prod 62:205–210CrossRefPubMedGoogle Scholar
  52. Gao L, Chen M, Ouyang Y et al (2018) Icaritin induces ovarian cancer cell apoptosis through activation of p53 and inhibition of Akt/mTOR pathway. Life Sci 202:188–194CrossRefPubMedGoogle Scholar
  53. Gillet JP, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105:452–458CrossRefPubMedPubMedCentralGoogle Scholar
  54. Guo Y, Zhang X, Meng J et al (2011) An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. Eur J Pharmacol 658:114–122CrossRefPubMedPubMedCentralGoogle Scholar
  55. Guo F, Feng L, Huang C et al (2013a) Prenylflavone derivatives from Broussonetia papyrifera, inhibit the growth of breast cancer cells in vitro and in vivo. Phytochem Lett 6:331–336CrossRefGoogle Scholar
  56. Guo M, Wang M, Zhang X et al (2013b) Broussoflavonol B restricts growth of ER-negative breast cancer stem-like cells. Anticancer Res 33:1873–1880PubMedGoogle Scholar
  57. Gupta N, Qayum A, Raina A et al (2018) Synthesis and biological evaluation of novel bavachinin analogs as anticancer agents. Eur J Med Chem 145:511–523CrossRefPubMedGoogle Scholar
  58. Han S, Gou Y, Jin D et al (2018) Effects of icaritin on the physiological activities of esophageal cancer stem cells. Biochem Biophys Res Commun 504:792–796CrossRefPubMedGoogle Scholar
  59. Hashim N, Rahmani M, Sukari MA et al (2010) Two new xanthones from Artocarpus obtusus. J Asian Nat Prod Res 12:106–112CrossRefPubMedGoogle Scholar
  60. He J, Wang Y, Duan F et al (2010) Icaritin induces apoptosis of HepG2 cells via the JNK1 signaling pathway independent of the estrogen receptor. Planta Med 76:1834–1839CrossRefPubMedGoogle Scholar
  61. Henley T, Reddivari L, Broeckling CD et al (2014) American India Pale Ale matrix rich in xanthohumol is potent in suppressing proliferation and elevating apoptosis of human colon cancer cells. Int J Food Sci Technol 49:2464–2471CrossRefGoogle Scholar
  62. Hong J, Zhang Z, Lv W et al (2013) Icaritin synergistically enhances the radiosensitivity of 4T1 breast cancer cells. PLoS ONE 8:e71347CrossRefPubMedPubMedCentralGoogle Scholar
  63. Hossain MA, Ismail Z (2011) New prenylated flavonoids of Orthosiphon stamineus grown in Malaysia. Asian J Biotechnol 3:200–205CrossRefGoogle Scholar
  64. Hsu CL, Shyu MH, Lin JA et al (2011) Cytotoxic effects of geranyl flavonoid derivatives from the fruit of Artocarpus communis in SK-Hep-1 human hepatocellular carcinoma cells. Food Chem 127:127–134CrossRefGoogle Scholar
  65. Huang WJ, Huang CH, Wu CL et al (2007a) Propolin G, a prenylflavanone, isolated from Taiwanese propolis, induces caspase-dependent apoptosis in brain cancer cells. J Agric Food Chem 55:7366–7376CrossRefPubMedGoogle Scholar
  66. Huang X, Zhu D, Lou Y (2007b) A novel anticancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur J Pharmacol 564:26–36CrossRefPubMedGoogle Scholar
  67. Huang S, Zhang CP, Wang K et al (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610–19632CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hudcová T, Bryndová J, Fialová K et al (2014) Antiproliferative effects of prenylflavonoids from hops on human colon cancer cell lines. J Inst Brew 120:225–230CrossRefGoogle Scholar
  69. Jin YJ, Lin CC, Lu TM et al (2015) Chemical constituents derived from Artocarpus xanthocarpus as inhibitors of melanin biosynthesis. Phytochemistry 117:424–435CrossRefPubMedGoogle Scholar
  70. Jin Y, Yoon YJ, Jeon YJ et al (2017) Geranylnaringenin (CG902) inhibits constitutive and inducible STAT3 activation through the activation of SHP-2 tyrosine phosphatase. Biochem Pharmacol 142:46–57CrossRefPubMedGoogle Scholar
  71. Jung HA, Jin SE, Choi RJ et al (2011) Anti-tumorigenic activity of sophoflavescenol against Lewis lung carcinoma in vitro and in vivo. Arch Pharm Res 34:2087–2099CrossRefPubMedGoogle Scholar
  72. Kaennakam S, Siripong P, Tip-pyang S (2017) Cytotoxicities of two new isoflavanes from the roots of Dalbergia velutina. J Nat Med 71:310–314CrossRefPubMedGoogle Scholar
  73. Kawakami S, Harinantenaina L, Matsunami K et al (2008) Macaflavanones A-G, prenylated flavanones from the leaves of Macaranga tanarius. J Nat Prod 71:1872–1876CrossRefPubMedGoogle Scholar
  74. Keiler AM, Macejova D, Dietz BM et al (2017) Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. J Steroid Biochem Mol Biol 174:234–241CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kim YK, Min BS, Bae KH (1997) A cytotoxic constituent from Sophora flavescens. Arch Pharm Res 20:342–345CrossRefPubMedGoogle Scholar
  76. Kitdamrongtham W, Ishii K, Ebina K et al (2014) Limonoids and flavonoids from the flowers of Azadirachta indica var. siamensis, and their melanogenesis-inhibitory and cytotoxic activities. Chem Biodivers 11:73–84CrossRefPubMedGoogle Scholar
  77. Ko WG, Kang TH, Kim NY et al (2000) Lavandulylflavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens. Toxicol In Vitro 14:429–433CrossRefPubMedGoogle Scholar
  78. Ko HH, Lu YH, Yang SZ et al (2005) Cytotoxic prenylflavonoids from Artocarpus elasticus. J Nat Prod 68:1692–1695CrossRefPubMedGoogle Scholar
  79. Kofujita H, Yaguchi M, Doi N et al (2004) A novel cytotoxic prenylated flavonoid from the root of Morus alba. J Insect Biotechnol Sericol 73:113–116Google Scholar
  80. Kong Y, Xiao JJ, Meng SC et al (2010) A new cytotoxic flavonoid from the fruit of Sinopodophyllum hexandrum. Fitoterapia 81:367–370CrossRefPubMedGoogle Scholar
  81. Kotecha R, Takami A, Espinoza JL (2016) Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 7:52517–52529CrossRefPubMedPubMedCentralGoogle Scholar
  82. Krajnović T, Kaluđerović GN, Wessjohann LA et al (2016) Versatile antitumor potential of isoxanthohumol: enhancement of paclitaxel activity in vivo. Pharmacol Res 105:62–73CrossRefPubMedGoogle Scholar
  83. Kuete V, Ngameni B, Wiench B et al (2011) Cytotoxicity and mode of action of four naturally occuring flavonoids from the genus Dorstenia: gancaonin Q, 4-hydroxylonchocarpin, 6-prenylapigenin, and 6,8-diprenyleriodictyol. Planta Med 77:1984–1989CrossRefPubMedGoogle Scholar
  84. Kuete V, Mbaveng AT, Zeino M et al (2015) Cytotoxicity of three naturally occurring flavonoid derived compounds (artocarpesin, cycloartocarpesin and isobavachalcone) towards multi-factorial drug-resistant cancer cells. Phytomedicine 22:1096–1102CrossRefPubMedGoogle Scholar
  85. Kumar S, Pathania AS, Nalli YK et al (2015) Synthesis of new O-alkyl and alkyne-azide cycloaddition derivatives of 4´-methoxy licoflavanone: a distinct prenylated flavonoids depicting potent cytotoxic activity. Med Chem Res 24:669–683CrossRefGoogle Scholar
  86. Lee JC, Won SJ, Chao CL et al (2008) Morusin induces apoptosis and suppresses NF-κB activity in human colorectal cancer HT-29 cells. Biochem Biophys Res Commun 372:236–242CrossRefPubMedGoogle Scholar
  87. Li X, Wang D, Xia MY et al (2009a) Cytotoxic prenylated flavonoids from the stem bark of Maackia amurensis. Chem Pharm Bull 57:302–306CrossRefPubMedGoogle Scholar
  88. Li X, Xu L, Wu P et al (2009b) Prenylflavonols from the leaves of Macaranga sampsonii. Chem Pharm Bull 57:495–498CrossRefPubMedGoogle Scholar
  89. Li F, Awale S, Tezuka Y et al (2009c) Cytotoxic constituents of propolis from Myanmar and their structure–activity relationship. Biol Pharm Bull 32:2075–2078CrossRefPubMedGoogle Scholar
  90. Li S, Priceman SJ, Xin H et al (2013) Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS ONE 8:e81657CrossRefPubMedPubMedCentralGoogle Scholar
  91. Li M, Wu X, Wang X et al (2018) Two novel compounds from the root bark of Morus alba L. Nat Prod Res 32:36–42CrossRefPubMedGoogle Scholar
  92. Limper C, Wang Y, Ruhl S et al (2013) Compounds isolated from Psoralea corylifolia seeds inhibit protein kinase activity and induce apoptotic cell death in mammalian cells. J Pharm Pharmacol 65:1393–1408CrossRefPubMedGoogle Scholar
  93. Lin WL, Lai DY, Lee YJ et al (2015) Antitumor progression potential of morusin suppressing STAT3 and NFκB in human hepatoma SK-Hep1 cells. Toxicol Lett 232:490–498CrossRefPubMedGoogle Scholar
  94. Liu D, Lan R, Xin XL et al (2008) A new lavandulyl flavonoid from Sorphora flavescens Ait. Chin Chem Lett 19:1453–1455CrossRefGoogle Scholar
  95. Liu Y, Shi L, Liu Y et al (2018) Activation of PPARγ mediates icaritin-induced cell cycle arrest and apoptosis in glioblastoma multiforme. Biomed Pharmacother 100:358–366CrossRefPubMedGoogle Scholar
  96. Lorendeau D, Dury L, Genoux-Bastide E et al (2014) Collateral sensitivity of resistant MRP1-overexpressing cells to flavonoids and derivatives through GSH efflux. Biochem Pharmacol 90:235–245CrossRefPubMedGoogle Scholar
  97. Luescher S, Urmann C, Butterweck V (2017) Effect of hops derived prenylated phenols on TNF-α induced barrier dysfunction in intestinal epithelial cells. J Nat Prod 80:925–931CrossRefPubMedGoogle Scholar
  98. Ma T, Dai YQ, Li N et al (2017) Enzymatic biosynthesis of novel neobavaisoflavone glucosides via Bacillus UDP-glycosyltransferase. Chin J Nat Med 15:281–287PubMedGoogle Scholar
  99. Miranda CL, Stevens JF, Helmrich A et al (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37:271–285CrossRefPubMedGoogle Scholar
  100. Murphy BT, Cao S, Norris A et al (2005) Cytotoxic flavanones of Schizolaena hystrix from the Madagascar rainforest. J Nat Prod 68:417–419CrossRefPubMedGoogle Scholar
  101. Murphy BT, Cao S, Norris A et al (2006) Cytotoxic compounds of Schizolaena hystrix from the Madagascar rainforest. Planta Med 72:1235–1238CrossRefPubMedGoogle Scholar
  102. Nam MS, Jung DB, Seo KH et al (2016) Apoptotic effect of sanggenol L via caspase activation and inhibition of NF-κB signaling in ovarian cancer cells. Phytother Res 30:90–96CrossRefPubMedGoogle Scholar
  103. Nana F, Sandjo LP, Keumedjio F et al (2012) Ceramides and cytotoxic constituents from Ficus glumosa Del. (Moraceae). J Braz Chem Soc 23:482–487CrossRefGoogle Scholar
  104. Neves MP, Cidade H, Pinto M et al (2011) Prenylated derivatives of baicalein and 3,7-dihydroxyflavone: synthesis and study of their effects on tumor cell lines growth, cell cycle and apoptosis. Eur J Med Chem 46:2562–2574CrossRefPubMedGoogle Scholar
  105. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661CrossRefPubMedGoogle Scholar
  106. Ngnintedo D, Fotso GW, Kuete V et al (2016) Two new pterocarpans and a new pyrone derivative with cytotoxic activities from Ptycholobium contortum (N.E.Br.) Brummitt (Leguminosae): revised NMR assignment of mundulea lactone. Chem Cent J 10: 58Google Scholar
  107. Nguyen PH, Sharma G, Dao TT et al (2012) New prenylated isoflavonoids as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Erythrina addisoniae. Bioorg Med Chem 20:6459–6464CrossRefPubMedGoogle Scholar
  108. Nguyen VS, Shi L, Wang SC et al (2017) Synthesis of icaritin and β-anhydroicaritin Mannich base derivatives and their cytotoxic activities on three human cancer cell lines. Anticancer Agents Med Chem 17:137–142CrossRefPubMedGoogle Scholar
  109. Ni G, Zhang QJ, Wang YH et al (2010) Chemical constituents of the stem bark of Morus cathayana. J Asian Nat Prod Res 12:505–515CrossRefPubMedGoogle Scholar
  110. Niles AL, Moravec RA, Riss TL (2008) Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov 3:655–669CrossRefPubMedGoogle Scholar
  111. Nkengfack AE, Azebaze AGB, Waffo AK et al (2001) Cytotoxic isoflavones from Erythrina indica. Phytochemistry 58:1113–1120CrossRefPubMedGoogle Scholar
  112. Ou L, Han S, Ding W et al (2011) Design, synthesis and 3D-QSAR study of cytotoxic flavonoid derivatives. Mol Divers 15:665–675CrossRefPubMedGoogle Scholar
  113. Pailee P, Sangpetsiripan S, Mahidol C et al (2015) Cytotoxic and cancer chemopreventive properties of prenylated stilbenoids from Macaranga siamensis. Tetrahedron 71:5562–5571CrossRefGoogle Scholar
  114. Pan SY, Zhou SF, Gao SH et al (2013) New perspectives on how to discover drugs from herbal medicines: cAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med 2013:627375PubMedPubMedCentralGoogle Scholar
  115. Pan XW, Li Lin, Huang Yi et al (2016) Icaritin acts synergistically with epirubicin to suppress bladder cancer growth through inhibition of autophagy. Oncol Rep 35:334–342CrossRefPubMedGoogle Scholar
  116. Pang X, Yin SS, Yu HY et al (2018) Prenylated flavonoids and dihydrophenanthrenes from the leaves of Epimedium brevicornu and their cytotoxicity against HepG2 cells. Nat Prod Res 32:2253–2259CrossRefPubMedGoogle Scholar
  117. Passreiter CM, Suckow-Schnitker AK, Kulawik A et al (2015) Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death. Phytochemistry 117:237–244CrossRefPubMedGoogle Scholar
  118. Pedro M, Lourenço CF, Cidade H et al (2006) Effects of natural prenylated flavones in the phenotypical ER (+) MCF-7 and ER (–) MDA-MB-231 human breast cancer cells. Toxicol Lett 164:24–36CrossRefPubMedGoogle Scholar
  119. Phommart S, Sutthivaiyakit P, Chimnoi N et al (2005) Constituents of the leaves of Macaranga tanarius. J Nat Prod 68:927–930CrossRefPubMedGoogle Scholar
  120. Poerwono H, Sasaki S, Hattori Y et al (2010) Efficient microwave-assisted prenylation of pinostrobin and biological evaluation of its derivatives as antitumor agents. Bioorg Med Chem Lett 20:2086–2089CrossRefPubMedGoogle Scholar
  121. Pollastro F, Minassi A, Fresu LG (2018) Cannabis phenolics and their bioactivities. Curr Med Chem 25:1160–1185CrossRefPubMedGoogle Scholar
  122. Qin J, Fan M, He J et al (2015) New cytotoxic and anti-inflammatory compounds isolated from Morus alba L. Nat Prod Res 29:1711–1718CrossRefPubMedGoogle Scholar
  123. Rao GV, Swamy BN, Chandregowda V et al (2009) Synthesis of (±)abyssinone I and related compounds: their anti-oxidant and cytotoxic activities. Eur J Med Chem 44:2239–2245CrossRefPubMedGoogle Scholar
  124. Ren Y, Kardono LBS, Riswan S et al (2010) Cytotoxic and NF-κB inhibitory constituents of Artocarpus rigida. J Nat Prod 73:949–955CrossRefPubMedPubMedCentralGoogle Scholar
  125. Rosselli S, Bruno M, Maggio A et al (2011) Cytotoxic geranylflavonoids from Bonannia graeca. Phytochemistry 72:942–945CrossRefPubMedPubMedCentralGoogle Scholar
  126. Rukachaisirikul T, Saekee A, Tharibun C et al (2007) Biological activities of the chemical constituents of Erythrina stricta and Erythrina subumbrans. Arch Pharm Res 30:1398–1403CrossRefPubMedGoogle Scholar
  127. Seo EK, Silva GL, Chai HB et al (1997) Cytotoxic prenylated flavanones from Monotes engleri. Phytochemistry 45:509–515CrossRefPubMedGoogle Scholar
  128. Seo EK, Lee D, Shin YG et al (2003) Bioactive prenylated flavonoids from the stem bark of Artocarpus kemando. Arch Pharm Res 26:124–127CrossRefPubMedGoogle Scholar
  129. Shen CC, Wang ST, Tsai SY et al (2005) Cinnamylphenols from Phyllodium pulchellum. J Nat Prod 68:791–793CrossRefPubMedGoogle Scholar
  130. Sheu YW, Chiang LC, Chen IS et al (2005) Cytotoxic flavonoids and new chromenes from Ficus formosana f. formosana. Planta Med 71:1165–1167CrossRefPubMedGoogle Scholar
  131. Shi YQ, Fukai T, Sakagami H et al (2001) Cytotoxic flavonoids with isoprenoid groups from Morus mongolica. J Nat Prod 64:181–188CrossRefPubMedGoogle Scholar
  132. Shirataki Y, Motohashi N, Tani S et al (2001) In vitro biological activity of prenylflavanones. Anticancer Res 21:275–280PubMedGoogle Scholar
  133. Šmejkal K (2014) Cytotoxic potential of C-prenylated flavonoids. Phytochem Rev 13:245–275CrossRefGoogle Scholar
  134. Šmejkal K, Svačinová J, Šlapetová T et al (2010) Cytotoxic activities of several geranyl-substituted flavanones. J Nat Prod 73:568–572CrossRefPubMedGoogle Scholar
  135. Sohn HY, Son KH, Kwon CS et al (2004) Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 11:666–672CrossRefPubMedGoogle Scholar
  136. Son IH, Chung IM, Lee SI et al (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755CrossRefPubMedGoogle Scholar
  137. Stompor M, Uram Ł, Podgórski R (2017) In vitro effect of 8-prenylnaringenin and naringenin on fibroblasts and glioblastoma cells-cellular accumulation and cytotoxicity. Molecules 22:E1092CrossRefPubMedGoogle Scholar
  138. Su XH, Li CY, Zhong YJ et al (2012) A new prenylated chalcone from the seeds of Millettia pachycarpa. Chin J Nat Med 10:222–225CrossRefGoogle Scholar
  139. Sudanich S, Tiyaworanant S, Yenjai C (2017) Cytotoxicity of flavonoids and isoflavonoids from Crotalaria bracteata. Nat Prod Res 31:2641–2646CrossRefPubMedGoogle Scholar
  140. Sun M, Han J, Duan J et al (2007) Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother Res 21:269–277CrossRefPubMedGoogle Scholar
  141. Sun YJ, Hao ZY, Si JG et al (2015a) Prenylated flavonoids from the fruits of Sinopodophyllum emodi and their cytotoxic activities. RSC Adv 5:82736–82742CrossRefGoogle Scholar
  142. Sun L, Peng Q, Qu L et al (2015b) Anticancer agent icaritin induces apoptosis through caspase-dependent pathways in human hepatocellular carcinoma cells. Mol Med Rep 11:3094–3100CrossRefPubMedGoogle Scholar
  143. Sun Q, Wang D, Li FF et al (2016) Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii. Bioorg Med Chem Lett 26:3968–3972CrossRefPubMedGoogle Scholar
  144. Sutthivaiyakit S, Thongnak O, Lhinhatrakool T et al (2009) Cytotoxic and antimycobacterial prenylated flavonoids from the roots of Eriosema chinense. J Nat Prod 72:1092–1096CrossRefPubMedGoogle Scholar
  145. Tamir S, Eizenberg M, Somjen D et al (2000) Estrogenic and antiproliferative properties of glabridin from licorice in human breast cancer cells. Cancer Res 60:5704–5709PubMedGoogle Scholar
  146. Tan KW, Cooney J, Jensen D et al (2014) Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Mol Nutr Food Res 58:2099–2110CrossRefPubMedGoogle Scholar
  147. Tan HL, Chan KG, Pusparajah P et al (2016) Anti-cancer properties of the naturally occurring aphrodisiacs: icariin and its derivatives. Front Pharmacol 7:191PubMedPubMedCentralGoogle Scholar
  148. Teixeira MVS, Lima JQ, Pimenta ATA et al (2018) New flavone and other compounds from Tephrosia egregia: assessing the cytotoxic effect on human tumor cell lines. Rev Bras Farmacogn 28:333–338CrossRefGoogle Scholar
  149. Tokalov SV, Henker Y, Schwab P et al (2004) Toxicity and cell cycle effects of synthetic 8-prenylnaringenin and derivatives in human cells. Pharmacology 71:46–56CrossRefPubMedGoogle Scholar
  150. Tong JS, Zhang QH, Huang X et al (2011) Icaritin causes sustained ERK1/2 activation and induces apoptosis in human endometrial cancer cells. PLoS ONE 6:e16781CrossRefPubMedPubMedCentralGoogle Scholar
  151. Tronina T, Bartmańska A, Filip-Psurska B et al (2013) Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro. Bioorg Med Chem 21:2001–2006CrossRefPubMedGoogle Scholar
  152. Venturelli S, Burkard M, Biendl M et al (2016) Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 32:1171–1178CrossRefPubMedGoogle Scholar
  153. Versiani MA, Diyabalanage T, Ratnayake R et al (2011) Flavonoids from eight tropical plant species that inhibit the multidrug resistance transporter ABCG2. J Nat Prod 74:262–266CrossRefPubMedPubMedCentralGoogle Scholar
  154. Vogler B, Cholewa L, Schmidt J et al (2006) Cytotoxic flavonoids from the bark of Lonchocarpus haberi from Monteverde, Costa Rica. PharmacologyOnline 3:850–855Google Scholar
  155. Wang XF, Wang J (2014) Icaritin suppresses the proliferation of human osteosarcoma cells in vitro by increasing apoptosis and decreasing MMP expression. Acta Pharmacol Sin 35:531–539CrossRefPubMedPubMedCentralGoogle Scholar
  156. Wang YH, Hou AJ, Chen L et al (2004) New isoprenylated flavones, artochamins A–E, and cytotoxic principles from Artocarpus chama. J Nat Prod 67:757–761CrossRefPubMedGoogle Scholar
  157. Wang YH, Hou AJ, Zhu GF et al (2005) Cytotoxic and antifungal isoprenylated xanthones and flavonoids from Cudrania fruticosa. Planta Med 71:273–274CrossRefPubMedGoogle Scholar
  158. Wang QH, Guo S, Yang XY et al (2017) Flavonoids isolated from Sinopodophylli fructus and their bioactivities against human breast cancer cells. Chin J Nat Med 15:225–233PubMedGoogle Scholar
  159. Wätjen W, Weber N, Lou YJ et al (2007) Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem Toxicol 45:119–124CrossRefPubMedGoogle Scholar
  160. Wätjen W, Suckow-Schnitker AK, Rohrig R et al (2008) Prenylated flavonoid derivatives from the bark of Erythrina addisoniae. J Nat Prod 71:735–738CrossRefPubMedGoogle Scholar
  161. Wesołowska O, Wiśniewski J, Środa K et al (2010) 8-Prenylnaringenin is an inhibitor of multidrug resistance-associated transporters, P-glycoprotein and MRP1. Eur J Pharmacol 644:32–40CrossRefPubMedGoogle Scholar
  162. WHO (2018a) What is cancer? (Cited 11 Oct 2018)
  163. WHO (2018b) Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. Press release N° 263 (Cited 11 Oct 2018)
  164. Win NN, Awale S, Esumi H et al (2007) Bioactive secondary metabolites from Boesenbergia pandurata of Myanmar and their preferential cytotoxicity against human pancreatic cancer PANC-1 cell line in nutrient-deprived medium. J Nat Prod 70:1582–1587CrossRefPubMedGoogle Scholar
  165. Xu B, Jiang C, Han H et al (2015) Icaritin inhibits the invasion and epithelial-to-mesenchymal transition of glioblastoma cells by targeting EMMPRIN via PTEN/AKt/HIF-1α signaling. Clin Exp Pharmacol Physiol 42:1296–1307CrossRefPubMedGoogle Scholar
  166. Yang DS, Wei JG, Peng WB et al (2014) Cytotoxic prenylated bibenzyls and flavonoids from Macaranga kurzii. Fitoterapia 99:261–266CrossRefPubMedGoogle Scholar
  167. Yang DS, Li ZL, Peng WB et al (2015a) Three new prenylated flavonoids from Macaranga denticulata and their anticancer effects. Fitoterapia 103:165–170CrossRefPubMedGoogle Scholar
  168. Yang DS, Peng WB, Yang YP et al (2015b) Cytotoxic prenylated flavonoids from Macaranga indica. Fitoterapia 103:187–191CrossRefPubMedGoogle Scholar
  169. Yang DS, Wang SM, Peng WB et al (2015c) Minor prenylated flavonoids from the twigs of Macaranga adenantha and their cytotoxic activity. Nat Prod Bioprospect 5:105–109CrossRefPubMedPubMedCentralGoogle Scholar
  170. Yang JG, Lu R, Ye XJ et al (2017) Icaritin reduces oral squamous cell carcinoma progression via the inhibition of STAT3 signaling. Int J Mol Sci 18:E132CrossRefPubMedGoogle Scholar
  171. Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745CrossRefPubMedGoogle Scholar
  172. Yoder BJ, Cao S, Norris A et al (2007) Antiproliferative prenylated stilbenes and flavonoids from Macaranga alnifolia from the Madagascar rainforest. J Nat Prod 70:342–346CrossRefPubMedPubMedCentralGoogle Scholar
  173. Yoon KH, Park KJ, Yin J et al (2016) Antioxidative and antitumor effects of isoflavones isolated from the leaves of Maackia fauriei. Rec Nat Prod 10:441–451Google Scholar
  174. Zakaria I, Ahmat N, Jaafar FM et al (2012) Flavonoids with antiplasmodial and cytotoxic activities of Macaranga triloba. Fitoterapia 83:968–972CrossRefPubMedGoogle Scholar
  175. Zheng Q, Liu WW, Li B et al (2014a) Anticancer effect of icaritin on human lung cancer cells through inducing S phase cell cycle arrest and apoptosis. J Huazhong Univ Sci Technol 34:497–503CrossRefGoogle Scholar
  176. Zheng ZP, Xu Y, Qin C et al (2014b) Characterization of antiproliferative activity constituents from Artocarpus heterophyllus. J Agric Food Chem 62:5519–5527CrossRefPubMedGoogle Scholar
  177. Żołnierczyk AK, Mączka WK, Grabarczyk M et al (2015) Isoxanthohumol–biologically active hop flavonoid. Fitoterapia 103:71–82CrossRefPubMedGoogle Scholar
  178. Zou YS, Hou AJ, Zhu GF et al (2004) Cytotoxic isoprenylated xanthones from Cudrania tricuspidata. Bioorg Med Chem 12:1947–1953CrossRefPubMedGoogle Scholar
  179. Zulfiqar F, Khan SI, Ross SA et al (2017) Prenylated flavonol glycosides from Epimedium grandiflorum: cytotoxicity and evaluation against inflammation and metabolic disorder. Phytochem Lett 20:160–167CrossRefGoogle Scholar
  180. Zuo GY, Yang CX, Han J et al (2018) Synergism of prenylflavonoids from Morus alba root bark against clinical MRSA isolates. Phytomedicine 39:93–99CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Natural Drugs, Faculty of PharmacyUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  2. 2.Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly

Personalised recommendations