Advertisement

Phytochemistry Reviews

, Volume 18, Issue 3, pp 571–599 | Cite as

Genus Erythrophleum: Botanical description, traditional use, phytochemistry and pharmacology

  • Ninh The SonEmail author
Article
  • 143 Downloads

Abstract

Genus Erythrophleum belongs to family Fabaceae, which is commonly found in Asia, Africa, and Australia. Erythrophleum species have been employed as digitalis-related drugs because of its various effects on the heart. Medicinal plants from this genus also bring positive results when employed as agents to invigorate and promote blood circulation, and as emetic drug, anesthetic, anthelmintic, anti-malaria, analgesic, disinfectant, dermatitis, convulsion, inflammation, cardiac problems, venom intoxication, headaches, oedemas, gangrenous wound, and rheumatism. This account is an overview of almost isolated compounds from this genus, along with their biological evaluations. The literature databases for this current manuscript were obtained from literature published from the 1960s to now, utilizing data from ACS journals, Taylor Francis, Springer, IOP Science, SCI-finder, Chemical Abstracts, the Web of Science, Scopus, Science Direct, Pub Med, and Google Scholar. In addition, books about herbal medicines and Ph.D. dissertations were used in relating to taxonomy and chemical components. Genus Erythrophleum contains the various classes of compounds, consisting of alkaloids, terpenoids, phytosterols, saponins, flavonoids, and their derivative glycosides. Many in vitro and in vivo pharmacological results, such as cytotoxicity, anti-oxidant, anti-bacterial, anti-convulsant, anti-inflammation, anti-cancer, anti-angiogenesis, sedative activity, cardiac activity, and toxicity indicated that the extracts, fractions, and isolated compounds of Erythrophleum species can become valuable resources for developing natural new drugs. Particularly, E. fordii species, with the high content of alkaloids, showed potential use for toxicological drugs. No account has been conducted for a general view about this genus. Further researches on isolating bioactive compounds and determining basic mechanisms are necessary.

Keywords

Genus Erythrophleum Traditional uses Phytochemistry Pharmacology 

Abbreviations

IUCN Red List

International Union for Conservation of Nature Red List

KB

Human epidermoid cancer cell line

HCT-8

Human colon cancer cell line

Bel-7402

Human hepatoma cell line

BGC-823

Human gastric carcinoma cell line

A549

Human lung epithelial cell line

A2780

Human ovarian cancer cell line

A375

Human malignant melanoma cell line

Hek-293

Human embryonic kidney cell line

AGS

Human gastric adenocarcinoma cell line

BT-549 and BT-20

Breast carcinoma cell lines

PC-3

Prostate carcinoma cell lines

SW-480

Human colon adenocarcinoma cell line

JURKAT

Human T lymphocyte cell line

MCF-7

Human breast cancer cell line

NCI-H1975

Lung adenocarcinoma cell line

NCI-H1229

Lung large cell carcinoma cell line

Ketr3

Human kidney cancer cell line

Hela

Cervial carcinoma cell line

TRAIL

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand

DPPH

2,2-Diphenyl-1-picrylhydrazyl

MTT

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

EC

Epicatechin

BHT

Butylated hydroxytoluene

DPI

Diphenyleneiodonium

LPS

Lipopolysaccharide

L-NAME

L-NG-Nitroarginine methyl ester

MIC

Minimum inhibitory concentration

MBC

Minimum bactericidal concentration

MFC

Minimum fungicidal concentration

Notes

Acknowledgements

This work was supported by a grant from Vietnam Academy of Science and Technology, Vietnam-2019.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

References

  1. Abia W, Arojo O, Nneka I et al (2009) Influence of sex on subchronic toxicity of Erythrophleum suaveolens plant extracts in rabbits. Toxicol Lett 189:s188.  https://doi.org/10.1016/j.toxlet.2009.06.570 CrossRefGoogle Scholar
  2. Adeoye BA, Oyedapo OO (2004) Toxicity of Erythrophleum guineense stem bark: role of alkaloidal fraction. Afr J Tradit CAM 1:45–54Google Scholar
  3. Aiyegoro OA, Akinpelu DA, Okoh AI (2007) In vitro antibacterial potentials of the stem bark of red water tree (Erythrophleum suaveolens). J Biol Sci 7:1233–1238.  https://doi.org/10.3923/jbs.2007.1233.1238 CrossRefGoogle Scholar
  4. Akinpelu BA, Dade CA, Adebesin FI et al (2012) Effect of stem-bark of Erythrophleum suaveolens (Guill. & Perri.) saponin on fresh water snail (Lanistes lybicus) tissues. Afr J Environ Sci Technol 6:446–451.  https://doi.org/10.5897/AJEST12.007 CrossRefGoogle Scholar
  5. Amoah LA, Agyare C, Kisseih E et al (2014) Toxicity assessment of Erythrophleum ivorense and Parquetina nigrescens. Toxicol Rep 1:411–420.  https://doi.org/10.1016/j.toxrep.2014.06.009 CrossRefGoogle Scholar
  6. Aniszewski T (2007) Alkaloids-secrets of life. Elsevier, Amsterdam. ISBN 978-0-444-52736-3Google Scholar
  7. Armah FA (2016) Bioactive anti-leishmanial agents: prospect of the Ghanaian biodiversity. Kwame Nkrumah University of Science and Technology, GhanaGoogle Scholar
  8. Armah FA, Annan K, Mensah AY et al (2015) Eryhtroivoresin: a novel anti-inflammatory diterpene from the root-bark of Erythrophleum ivorense (A Chev.). Fitoterapia 105:37–42.  https://doi.org/10.1016/j.fitote.2015.06.001 CrossRefGoogle Scholar
  9. Armah FA, Amponsah IK, Mensah AY et al (2018) Leishmanicidal activity of the root bark of Erythrophleum ivorense (Fabaceae) and identification of some of its compounds by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOFMS/MS). J Ethnopharmacol 211:207–216.  https://doi.org/10.1016/j.jep.2017.09.030 CrossRefGoogle Scholar
  10. Choi CW, Song SB, Oh JS et al (2015) Antiproliferation effects of selected Tanzania plants. Afr J Tradit Complement Altern Med 12:96–102.  https://doi.org/10.4314/ajtcam.vl2i2.15 CrossRefGoogle Scholar
  11. Clarke RL (1971) Erythrophleum alkaloids. Phytochemistry 10:851–856.  https://doi.org/10.1016/S0031-9422(00)97155-3 CrossRefGoogle Scholar
  12. Cronlund A (1973) New alkaloids from Erythrophleum species. Planta Med 24:371–374.  https://doi.org/10.1055/s-0028-1099511 CrossRefGoogle Scholar
  13. Cronlund A (1976) The botanical and phytochemical differentiation between Erythrophleum Suaveolens and E. Ivorense. Planta Med 29:123–128.  https://doi.org/10.1055/s-0028-1097640 CrossRefGoogle Scholar
  14. Dade JME, Okpekon TA, Say M (2015) Cassane diterpenoids from stem bark of Erythrophleum suaveolens [(Guill. et Perr.), Brenan]. Phytochem Lett 12:224–231.  https://doi.org/10.1016/j.phytol.2015.04.002 CrossRefGoogle Scholar
  15. Dongmo AB, Kamanyi A, Anchang MS et al (2001) Anti-inflammatory and analgesic properties of the stem bark extracts of Erythrophleum suaveolens (Caesalpiniaceae), Guillemin & Perrottet. J Ethnopharmacol 77:137–141.  https://doi.org/10.1016/S0378-8741(01)00296-3 CrossRefGoogle Scholar
  16. Du D, Qu J, Yu SS et al (2010) Cytotoxic cassaine diterpenoid-diterpenoid amide dimers and diterpenoid amides from the leaves of Erythrophleum fordii. Phytochemistry 71:1749–1755.  https://doi.org/10.1016/phytochem.2010.07.004 CrossRefGoogle Scholar
  17. Du D, Qu J, Yu S et al (2011) Oleanane-type triterpene saponins and cassaine-type diterpenoids from Erythrophleum fordii. Planta Med 77:1631–1638.  https://doi.org/10.1055/s-0030-1270992 CrossRefGoogle Scholar
  18. Duminil J, Koffi GK, Debout G et al (2011) Isolation of SSR markers for two African tropical tree species, Erythrophleum suaveolens and E. ivorense (Caesalpinioideae). Am J Bot 98:106–108.  https://doi.org/10.3732/ajb.1000482 CrossRefGoogle Scholar
  19. Erythrophelum (2019a) http://www.theplantlist.org/Erythrophleum. Cited 01 Mar 2019
  20. Erythrophelum (2019b) https://www.epic.kew.org/Erythrophleum. Cited 01 Mar 2019
  21. Fadeyi SA, Fadeyi OO, Adejumo AA et al (2013) In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complement Altern Med 13:79.  https://doi.org/10.1186/1472-6882-13-79 CrossRefGoogle Scholar
  22. Griffin W, Hippard JHP, Culvenor CCJ et al (1971) Alakloids of the leaves of Erythrophleum chlorostachys. Phytochemistry 10:2793–2797.  https://doi.org/10.1016/S0031-9422(00)97281-9 CrossRefGoogle Scholar
  23. Ha MT, Tran MH, Phuong TT et al (2017) Cytotoxic and apoptosis-inducing activities against human cancer cell lines of cassaine diterpenoids from the bark of Erythrophleum fordii. Bioorg Med Chem Lett 27:2946–2952.  https://doi.org/10.1016/j.bmcl.2017.05.006 CrossRefGoogle Scholar
  24. Hassan SW, Ladan MJ, Dogondaji RA et al (2007) Phytochemical and toxicological studies of aqueous leaves extracts of Erythrophleum africanum. Pak J Biol Sci 10:3815–3821.  https://doi.org/10.3923/pjbs.2007.3815.3821 CrossRefGoogle Scholar
  25. Hung TM, Cuong TD, Kim JA (2014a) Cassaine diterpenpene alkaloids from Erythrophleum fordii and their anti-angiogenic effect. Bioorg Med Chem Lett 24:168–172.  https://doi.org/10.1016/j.bmcl.2013.11.048 CrossRefGoogle Scholar
  26. Hung TM, Cuong TD, Kim JA et al (2014b) In vitro apoptotic effect of cassaine-type diterpene amides from Erythrophleum fordii on PC-3 protate cancer cells. Bioorg Med Chem Lett 24:4989–4994.  https://doi.org/10.1016/j.bmcl.2014.09.025 CrossRefGoogle Scholar
  27. Joseph N, Mirelle AFR, Matchawe C et al (2016) Evaluation of the antimicrobial activity of tannin extracted from the barks of Erythrophleum guineensis (Caesalpiniaceae). J Pharmacogn Phytochem 5:287–291Google Scholar
  28. Kablan LA, Dade JME, Say M et al (2014) Four new cassane diterpenoid amides from Erythrophleum suaveolens [(Guill. et Perr.), Brenan]. Phytochem Lett 10:60–64.  https://doi.org/10.1016/j.phytol.2014.08.005 CrossRefGoogle Scholar
  29. Lindwall O, Sandberg F, Thorsen R (1965) Erythrophleguine, a new alkaloid from the bark of Erythrophleum guieense (G. Don.). Tetrahedron Lett 6:4203–4208.  https://doi.org/10.1016/S0040-4039(01)89108-5 CrossRefGoogle Scholar
  30. Loder JW, Nearn RH (1975a) 3β-Acetoxynorerythrosuamine, a high cytotoxic alkaloid from Erythrophleum chlorostachys. Tetrahedron Lett 29:2497–2498.  https://doi.org/10.1016/0040-4039(75)80048-7 CrossRefGoogle Scholar
  31. Loder JW, Nearn RH (1975b) Structure of norerythrostachaldine, a cytotoxic alkaloid from Erythrophleurn chlorostachys (Leguminosae). Aust J Chem 28:651–656.  https://doi.org/10.1071/CH9750651 CrossRefGoogle Scholar
  32. Loder JW, Culvenor CCJ, Near RH et al (1972) Isolation of norcassamidide and authentic norcassamidine from Erythrophleum chlorostachys. Structural revision of the alkaloids previously known as norcassamidine, norcassamine, norethythrosuamine and dehydro-norerythrosuamine. Tetrahedron Lett 50:5069–5072.  https://doi.org/10.1016/S0040-4039(01)85172-8 CrossRefGoogle Scholar
  33. Loder JW, Culvenor CCJ, Near RH et al (1974) Tumour inhibitory plants. New alkaloids from the bark of Evythrophleum chlorostachys (Leguminosae). Aust J Chem 27:179–185.  https://doi.org/10.1071/CH9740179 CrossRefGoogle Scholar
  34. Manfouo RN, Lontsi D, Ngounou FN et al (2005) Erythrosuavine, a new diterpenic alakloid from Eryhtrophleum suaveolens (Guill. & Perr.) Brenan. Bull Chem Soc Ethiop 19:69–74Google Scholar
  35. Margaret SG (1959) Structure studies of cassaic acid. Boston University, BostonGoogle Scholar
  36. Maurya R, Ravi M, Singh S et al (2012) A review on cassane and norcassane diterpenes and their pharmacological studies. Fitoterapia 83:272–280.  https://doi.org/10.1016/j.fitote.2011.12.007 CrossRefGoogle Scholar
  37. Miyagawa T, Ohtsuki T, Koyano T et al (2009) Cassaine diterpenoid dimers isolated from Erythrophleum succirubrum with TRAIL-resistance overcoming activity. Tetrahedron Lett 50:4658–4662.  https://doi.org/10.1016/j.tetlet.2009.05.113 CrossRefGoogle Scholar
  38. Mohammed M, Musa MA, Garba MA et al (2014) Phytochemical and antimicrobial study on the leaf extracts of Erythrophleum africanum (Caesalpiniaceae). Afr J Biotechnol 13:598–603.  https://doi.org/10.5897/AJB2013.13059 CrossRefGoogle Scholar
  39. Nan L, Fang Y, Shan YS (2004) Triterpenoids from Erythrophleum fordii. Acta Bot Sin 46:371–374Google Scholar
  40. Nghia NH (1998) Erythrophleum fordii. The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32342A9699618.en
  41. Ngounou FN, Manfouo RN, Tapondjou LA (2005) Antimicrobial diterpenoid alkaloids from Erythrophleum suaveolens (Guill & Perr.) Brenan. Bull Chem Soc Ethiop 19:221–226Google Scholar
  42. Ngoupayo J, Tabopda TK, Ali MS et al (2015) Antioxidant stilbenoid and flavanonol from stem of Erythrophleum suaveolens (Guill. & Perr.). Magn Reson Chem 53:612–615.  https://doi.org/10.1002/mrc.4253 CrossRefGoogle Scholar
  43. Nwosu MO, Okafor JI (1995) Preliminary studies of the antifungal activities of some medicinal plants against Basidiobolus and some other pathogenic fungi. Mycoses 38:191–195CrossRefGoogle Scholar
  44. Ogboru RG, Akideno LO, Owoeye EA (2017) Chemical composition and medicinal potentials of the bark of Erythrophleum ivorense A. Chev. J Biosci Biotechnol Discov 2:15–20CrossRefGoogle Scholar
  45. Orsini F, Pelizzoni F, Verotta L et al (1997) Isolation, synthesis, and antiplatelet aggregation activity of resveratrol 3-O-β-d-glucopyranoside and related compounds. J Nat Prod 60:1082–1087.  https://doi.org/10.1021/NP970069T CrossRefGoogle Scholar
  46. Otterness IG, Moore PF (1988) Carrageenan foot edema test. Methods Enzymol 162:320–327.  https://doi.org/10.1016/0076-6879(88)62086-6 CrossRefGoogle Scholar
  47. Pascal LM, Florac EFM, Mckey DB (2000) Secretory structure on the leaf rachis of Caesalpiniaeae and Mimosoideae (Leguminosae): implications for the evolution of nectary glands. Am J Bot 87:327–338CrossRefGoogle Scholar
  48. Qu J, Hu YC, Yu SS et al (2006) New cassaine diterpenoid amides with cytotoxic activities from the bark of Erythrophleum fordii. Planta Med 72:442–449.  https://doi.org/10.1055/s-2005-91624 CrossRefGoogle Scholar
  49. Qu J, Wang JH, Li JB et al (2007) Rapid structural determination of new trace cassaine-type diterpenoid amides in fractions from Erythrophleum fordii by liquid chromatography-diode-array detection/electrospray ionization tandem mass spectroscopy and liquid chromatography/nuclear magnetic resonance. Rapid Commun Mass Spectrom 21:2109–2119.  https://doi.org/10.1002/rcm.3069 CrossRefGoogle Scholar
  50. Saha JBT, Abia D, Dumarcay S et al (2013) Antioxidant activities, total phenolic contents and chemical compositions of extracts from four Cameroonian woods: padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi (Baillonella toxisperma), and movingui (Distemonanthus benthamianus). Ind Crops Prod 41:71–77.  https://doi.org/10.1016/j.indcrop.2012.04.012 CrossRefGoogle Scholar
  51. Son NT (2017a) An overview of the genus Prismatomeris: phytochemistry and biological activity. Bull Fac Pharm (Cairo Univ) 55:11–18.  https://doi.org/10.1016/j.bfopcu.2017.03.003 Google Scholar
  52. Son NT (2017b) A review on the medicinal plant Dalbergia odorifera species: phytochemistry and biological activity. Evid Based Complement Altern Med 27, 7142370.  https://doi.org/10.1155/2017/7142370 Google Scholar
  53. Son NT, Oda M, Hayashi N et al (2018) Antimicrobial activity of the constituents of Dalbergia tonkinensis and structural-bioactive highlights. Nat Prod Commun 13:157–161Google Scholar
  54. Sowemimo AA, Fakoya FA, Awopetu I et al (2007) Toxicity and mutagenic activity of some selected Nigerian plants. J Ethnopharmacol 113:427–432.  https://doi.org/10.1016/j.jep.2007.06.024 CrossRefGoogle Scholar
  55. Throllel A, Agurell S, Finn S (1968) Three new alkaloids from the bark of Erythrophleum guineense G. Don syn. E. suaveolens (Guill. & Perr) Brenan. Acta Chem Scand 22:2835–2844.  https://doi.org/10.3891/acta.chem.scand.22-2835 CrossRefGoogle Scholar
  56. Tsao CC, Shen YC, Su CR et al (2008) New diterpenoids and the bioactivity of Erythrophleum fordii. Bioorg Med Chem Lett 16:9867–9870.  https://doi.org/10.1016/j.bmcl.2008.09.021 CrossRefGoogle Scholar
  57. Twilley D, Langhansová L, Palaniswamy D et al (2017) Evaluation of traditionally used medicinal plants for anticancer, antioxidant, anti-inflammatory and anti-viral (HPV-1) activity. S Afr J Bot 112:494–500.  https://doi.org/10.1016/j.sajb.2017.05.021 CrossRefGoogle Scholar
  58. Verrota L, Aburjai T, Roger CB et al (1995) Chemical and pharmacological characterization of Erythrophleum lasianthum alkaloids. Planta Med 61:271–274.  https://doi.org/10.1055/s-2006-958071 CrossRefGoogle Scholar
  59. Wakeel OK, Umukoro S, Kolawole OT et al (2013) Anticonvulsant and sedative activities of extracts of Erythrophleum ivorense stem bark in mice. Asian J Biomed Pharm Sci 28:44–47Google Scholar
  60. Weerapreeyakul N, Junhom C, Barusrux S et al (2016) Induction of apoptosis in human hepatocellular carcinoma cells by extracts of Lannea coromandelica (Houtt.) Merr. and Diospyros castanea (Craib) Fletcher. Chin Med 11:19.  https://doi.org/10.1186/s13020-016-0091-z CrossRefGoogle Scholar
  61. Yu F, Li N, Yu SS (2005) A new diterpenoid glucopyranoside from Erythrophleum fordii. J Asian Nat Prod Res 7:19–24.  https://doi.org/10.1080/10286020310001608976 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Bioactive Products, Institute of Natural Products ChemistryVietnam Academy of Science and Technology (VAST)HanoiVietnam

Personalised recommendations