The combinatory effects of natural products and chemotherapy drugs and their mechanisms in breast cancer treatment

  • Yubo Zhang
  • Huajun Li
  • Jing Zhang
  • Chaoran Zhao
  • Shuai Lu
  • Jinping QiaoEmail author
  • Mei HanEmail author


Breast cancer is the leading cause of cancer-related death among females. The global morbidity and mortality associated with breast cancer have recently been increasing. Surgery, radiation therapy, chemotherapy, endocrine therapy and biotargeted therapy, alone or in combination, are commonly used for breast cancer treatment. However, diverse side effects can be caused by the current treatments. Natural products derived from plants have almost no toxicity and side effects, with many functions and therapeutic activities. Many preclinical studies have reported the potential of natural products to enhance the effects of chemotherapy drugs in breast cancer treatment. The combined effects of these treatments in breast cancer are summarized in this review, as well as the in vivo and in vitro mechanisms. Natural products enhanced anti-cancer effects and apoptosis via the EGFR, PI3K-Akt, Wnt and other pathways. The toxicity, side effects, and drug resistance were reduced with the combination therapies. The combination of chemotherapy drugs and natural products could be a promising and effective strategy to treat breast cancer.


Breast cancer Natural products Chemotherapy Combinatory effect 


ABC transporters

ATP-binding cassette transporters


Protein kinase B


Adenosine 5′-monophosphate-activated protein kinase


Accelerated partial-breast irradiation


Bcl-2-like protein 4


B-cell lymphoma 2


Breast cancer resistance protein


Breast cancer stem cells


Cyclin-dependent kinase 2


Cyclin-dependent kinase 4


Combination index


Epidermal growth factor receptor


Estrogen receptor


Extracellular regulated protein kinase 1/2


Estrogen receptor alpha


Estrogen receptor beta 2


Focal adhesion kinase


Fas receptor




Human epidermal growth factor receptor-2


Human epidermal growth factor receptor-2-positive


Alpha hypoxia-inducible factor-1


Independent phospholipase A2


Inhibitor of NF-κB alpha


Matrix metalloproteinase-9


Multidrug resistance-associated protein 1


Mammalian target of rapamycin


National comprehensive cancer network


Nuclear factor-κB


Poly ADP-ribose polymerase




Phosphoinositide 3 kinase


Progesterone receptor




Reactive oxygen species


Signal transducer and activator of transcription 3


Triple-negative breast cancer


Twist-related protein 1


Whole-breast irradiation




Phosphorylated extracellular signal-regulated kinase 1/2


Phosphorylated protein kinase B


Apoptosis-inducing factor


ATP-binding cassette super-family G member 2


Enhancer of zeste homolog 2



This study was funded by the Asia–Pacific Cancer Research Foundation and the National Key Research and Development Program of China (2017YFC0113305).


  1. Abdulkareem IH (2013) Aetio-pathogenesis of breast cancer. Niger Med J NLM 54(6):371–375CrossRefGoogle Scholar
  2. Abe O, Abe R, Enomoto K et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106CrossRefGoogle Scholar
  3. Allegra A, Innao V, Russo S et al (2017) Anticancer activity of curcumin and its analogues: preclinical and clinical studies. Cancer Invest 35(1):1–22CrossRefPubMedGoogle Scholar
  4. Ba Z, Zheng Y, Zhang H et al (2009) Potential anti-cancer activity of furanodiene. Chin J Cancer Res 21(2):154–158CrossRefGoogle Scholar
  5. Baena Ruiz R, Salinas Hernandez P (2014) Diet and cancer: risk factors and epidemiological evidence. Maturitas 77(3):202–208CrossRefPubMedGoogle Scholar
  6. Banik U, Parasuraman S, Adhikary AK et al (2017) Curcumin: the spicy modulator of breast carcinogenesis. J Exp Clin Cancer Res 36:98CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Disc Technol 12(1):3–20CrossRefGoogle Scholar
  8. Bayet Robert M, Kwiatkowski F, Leheurteur M et al (2010) Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 9(1):8–14CrossRefPubMedGoogle Scholar
  9. Becker S (2015) A historic and scientific review of breast cancer: the next global healthcare challenge. Int J Gynecol Obstet 131:S36–S39CrossRefGoogle Scholar
  10. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRefPubMedGoogle Scholar
  11. Calaf GM, Ponce-Cusi R, Carrion F (2018) Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol Rep 40(4):2381–2388PubMedGoogle Scholar
  12. Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132CrossRefPubMedGoogle Scholar
  13. Chen X, Leung GPH, Zhang Z et al (2017) Proanthocyanidins from uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem Toxicol 107:248–260CrossRefPubMedGoogle Scholar
  14. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446CrossRefPubMedGoogle Scholar
  15. Ci Y, Qiao J, Han M (2016) Molecular mechanisms and metabolomics of natural polyphenols interfering with breast cancer metastasis. Molecules 21(12):1634CrossRefPubMedCentralGoogle Scholar
  16. Cook MT (2018) Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer Targets Ther 10:89–100CrossRefGoogle Scholar
  17. Darband SG, Kaviani M, Yousefi B et al (2018) Quercetin: a functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol 233(9):6544–6560CrossRefPubMedGoogle Scholar
  18. Du G, Lin H, Yang Y et al (2010) Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. Int Immunopharmacol 10(7):819–826CrossRefPubMedGoogle Scholar
  19. Ferguson JE, Orlando RA (2015) Curcumin reduces cytotoxicity of 5-fluorouracil treatment in human breast cancer cells. J Med Food 18(4):497–502CrossRefPubMedGoogle Scholar
  20. Gilbert ER, Liu D (2013) Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic beta-cell function. Food Funct 4(2):200–212CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gold Smith F, Fernandez A, Bishop K (2016) Mangiferin and cancer: mechanisms of action. Nutrients 8(7):396CrossRefPubMedCentralGoogle Scholar
  22. Gradishar WJ, Anderson BO, Balassanian R et al (2015) NCCN clinical practice guidelines in oncology: breast cancer. Version 2. 2015. J Natl Compr Cancer Netw 13(4):448–475CrossRefGoogle Scholar
  23. Guo Y, Bruno RS (2015) Endogenous and exogenous mediators of quercetin bioavailability. J Nutr Biochem 26(3):201–210CrossRefPubMedGoogle Scholar
  24. Guo X, Yin S, Dong Y et al (2013) Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAK. Mol Carcinog 52(11):879–889CrossRefPubMedGoogle Scholar
  25. Hassan MSU, Ansari J, Spooner D et al (2010) Chemotherapy for breast cancer (review). Oncol Rep 24(5):1121–1131CrossRefPubMedGoogle Scholar
  26. Hong Z, Jundong Z, Mantian M et al (2006) Effects of genistein and chemotherapeutic agents on proliferation of human breast cancer cell line MDA-MB-453. Acta Academiae Medicinae Militaris Tertiae 28(7):710–713Google Scholar
  27. Hu H, Wei W, Yi X et al (2017) A retrospective analysis of clinical utility of AJCC 8th edition cancer staging system for breast cancer. World J Oncol 8(3):71–75CrossRefPubMedPubMedCentralGoogle Scholar
  28. Huang CY, Ju DT, Chang CF et al (2017) A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomed Taiwan 7(4):12–23CrossRefGoogle Scholar
  29. Ibraheem A, Stankowski-Drengler TJ, Gbolahan OB et al (2016) Chemotherapy-induced cardiotoxicity in breast cancer patients. Breast Cancer Manag 5(1):31–41CrossRefGoogle Scholar
  30. Imran M, Arshad MS, Butt MS et al (2017) Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 16:84CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jeon YW, Suh YJ (2013) Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol Rep 29(2):819–825CrossRefPubMedGoogle Scholar
  32. Jiang M, Huang O, Zhang X et al (2013) Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. Molecules 18(1):701–720CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jiang C, Sun T, Xiang D et al (2018) Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front Pharmacol 9:530CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ju YH, Doerge DR, Allred KF et al (2002) Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res 62(9):2474–2477PubMedGoogle Scholar
  35. Kang HJ, Lee SH, Price JE et al (2009) Curcumin suppresses the paclitaxel-induced nuclear factor-kappa B in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast J 15(3):223–229CrossRefPubMedGoogle Scholar
  36. Kang Y, Park MA, Heo SW et al (2013) The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. BBA-GEN Subj 1830(3):2638–2648CrossRefGoogle Scholar
  37. Kapinova A, Stefanicka P, Kubatka P et al (2017) Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed Pharmacother 96:1465–1477CrossRefPubMedGoogle Scholar
  38. Kapoor S (2013) Luteolin and its inhibitory effect on tumor growth in systemic malignancies. Exp Cell Res 319(6):777–778CrossRefPubMedGoogle Scholar
  39. Kaushik S, Shyam H, Sharma R et al (2016) Genistein synergizes centchroman action in human breast cancer cells. Indian J Pharmacol 48(6):637–642CrossRefPubMedPubMedCentralGoogle Scholar
  40. Khurana RK, Kaur R, Lohan S et al (2016) Mangiferin: a promising anticancer bioactive. Pharm Pat Anal 5(3):169–181CrossRefPubMedGoogle Scholar
  41. Kim SH, Kim CW, Jeon SY et al (2014) Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab Anim Res 30(4):143–150CrossRefPubMedPubMedCentralGoogle Scholar
  42. Koh Y-C, Pan M-H (2018) Review on discovery and development of novel phytochemicals which can be used in functional foods. Curr Res Nutr Food Sci 6(2):241–262CrossRefGoogle Scholar
  43. Krishnamurthy A, Soundara V, Ramshankar V (2016) Preventive and risk reduction strategies for women at high risk of developing breast cancer: a review. Asian Pac J Cancer Prev 17(3):895–904CrossRefPubMedGoogle Scholar
  44. Kumar P, Kadakol A, Shasthrula PK et al (2015) Curcumin as an adjuvant to breast cancer treatment. Anticancer Agents Med Chem 15(5):647–656CrossRefPubMedGoogle Scholar
  45. Kwon Y (2017) Luteolin as a potential preventive and therapeutic candidate for Alzheimer’s disease. Exp Gerontol 95:39–43CrossRefPubMedGoogle Scholar
  46. Lattrich C, Lubig J, Springwald A et al (2011) Additive effects of trastuzumab and genistein on human breast cancer cells. Anticancer Drugs 22(3):253–261CrossRefPubMedGoogle Scholar
  47. Lester J (2015) Local treatment of breast cancer. Semin Oncol Nurs 31(2):122–133CrossRefPubMedGoogle Scholar
  48. Li YW, Ahmed F, Ali S et al (2005) Inactivation of nuclear factor kappa B by soy isoflavone genistein contributes to increased apoptosis mduced by chemotherapeutic agents in human cancer cells. Cancer Res 65(15):6934–6942CrossRefPubMedGoogle Scholar
  49. Li S, Li K, Zhang J et al (2013) The effect of quercetin on doxorubicin dytotoxicity in human breast cancer cells. Anticancer Agents Med Chem 13(2):352–355CrossRefPubMedGoogle Scholar
  50. Li Y, Yang L, Zhao Q et al (2014) Clinical significance of BRCA1/2 mutations testing in triple-negative breast cancer patients. Chin J Cancer Prev Treat 21(22):1812–1815Google Scholar
  51. Li Q, Chen J, Li T et al (2015) Impact of in vitro simulated digestion on the potential health benefits of proanthocyanidins from Choerospondias axillaris peels. Food Res Int 78:378–387CrossRefPubMedGoogle Scholar
  52. Li Y, Yao J, Han C et al (2016) Quercetin, inflammation and immunity. Nutrients 8(3):167CrossRefPubMedPubMedCentralGoogle Scholar
  53. Li S, Yuan S, Zhao Q et al (2018) Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother 100:441–447CrossRefPubMedGoogle Scholar
  54. Liu C, Ho PC-L, Wong FC et al (2015a) Garcinol: current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett 362(1):8–14CrossRefPubMedGoogle Scholar
  55. Liu M, Hansen PE, Wang G et al (2015b) Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (humulus lupulus). Molecules 20(1):754–779CrossRefPubMedPubMedCentralGoogle Scholar
  56. Liu M, Yin H, Qian X et al (2017) Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant MCF-7/ADR cells. Molecules 22(1):36CrossRefGoogle Scholar
  57. Lotha R, Sivasubramanian A (2018) Flavonoids nutraceuticals in prevention and treatment of cancer: a review. Asian J Pharm Clin Res 11:42–47CrossRefGoogle Scholar
  58. Louisa M, Soediro TM, Suyatna FD (2014) In vitro modulation of P-glycoprotein, MRP-1 and BCRP expression by mangiferin in doxorubicin-treated MCF-7 cells. Asian Pac J Cancer Prev 15(4):1639–1642CrossRefPubMedGoogle Scholar
  59. Lu J, Dang Y, Huang M et al (2012) Anti-cancer properties of terpenoids isolated from Rhizoma Curcumae—a review. J Ethnopharmacol 143(2):406–411CrossRefPubMedGoogle Scholar
  60. Luo Y, Shang P, Li D (2017) Luteolin: a flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front Pharmacol 8:692CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mai Z, Blackburn GL, Zhou J (2007) Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor-positive and HER2-overexpressing human breast cancer cells. Mol Carcinog 46(7):534–542CrossRefPubMedPubMedCentralGoogle Scholar
  62. Meiyanto E, Hermawan A, Anindyajati A (2012) Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev 13(2):427–436CrossRefPubMedGoogle Scholar
  63. Metri K, Bhargav H, Chowdhury P et al (2013) Ayurveda for chemo-radiotherapy induced side effects in cancer patients. J Stem Cell 8(2):115–129Google Scholar
  64. Mitra AK, Agrahari V, Mandal A et al (2015) Novel delivery approaches for cancer therapeutics. J Control Release 219:248–268CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mlcek J, Jurikova T, Skrovankova S et al (2016) Quercetin and its anti-allergic immune response. Molecules 21(5):623CrossRefPubMedCentralGoogle Scholar
  66. Moga MA, Dimienescu OG, Arvatescu CA et al (2016) The role of natural polyphenols in the prevention and treatment of cervical cancer—an overview. Molecules 21(8):1055CrossRefPubMedCentralGoogle Scholar
  67. Mohan A, Narayanan S, Sethuraman S et al (2013) Combinations of plant polyphenols and anti-cancer molecules: a novel treatment strategy for cancer chemotherapy. Anticancer Agents Med Chem 13(2):281–295CrossRefPubMedGoogle Scholar
  68. Na HK, Oliynyk S (2011) Effects of physical activity on cancer prevention. Ann N Y Acad Sci 1229(1):176–183CrossRefPubMedGoogle Scholar
  69. Nabavi SF, Braidy N, Gortzi O et al (2015) Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull 119:1–11CrossRefPubMedGoogle Scholar
  70. Nagini S (2017) Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem 17(2):152–163CrossRefPubMedGoogle Scholar
  71. Nobert GS, Kraak MM, Crawford S (2006) Estrogen dependent growth inhibitory effects of tamoxifen but not genistein in solid tumors derived from estrogen receptor positive (ER+) primary breast carcinoma MCF7: single agent and novel combined treatment approaches. Bull Cancer 93(7):E59–E66PubMedGoogle Scholar
  72. Nunes MA, Pimentel F, Costa ASG et al (2016) Cardioprotective properties of grape seed proanthocyanidins: an update. Trends Food Sci Technol 57:31–39CrossRefGoogle Scholar
  73. Pierre JF, Heneghan AF, Feliciano RP et al (2014) Cranberry proanthocyanidins improve intestinal sIgA during elemental enteral nutrition. J Parenter Enternal Nutr 38(1):107–114CrossRefGoogle Scholar
  74. Quispe Soto ET, Calaf GM (2016) Effect of curcumin and paclitaxel on breast carcinogenesis. Int J Oncol 49(6):2569–2577CrossRefPubMedGoogle Scholar
  75. Rauf A, Imran M, Khan IA et al (2018) Anticancer potential of quercetin: a comprehensive review. Phytother Res 32(11):2109–2130CrossRefPubMedGoogle Scholar
  76. Redondo-Blanco S, Fernandez J, Gutierrez-del-Rio I et al (2017) New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front Pharmacol 8:109CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rejhova A, Opattova A, Cumova A et al (2018) Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem 144:582–594CrossRefPubMedPubMedCentralGoogle Scholar
  78. Riscuta G, Dumitrescu RG (2012) Nutrigenomics: implications for breast and colon cancer prevention. Methods Mol Biol 863:343–358CrossRefPubMedGoogle Scholar
  79. Saadat N, Gupta SV (2012) Potential role of garcinol as an anticancer agent. J Oncol 2012:647206CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sahu AK, Verma VK, Mutneja E et al (2019) Mangiferin attenuates cisplatin-induced acute kidney injury in rats mediating modulation of MAPK pathway. Mol Cell Biochem 452(1):141–152CrossRefPubMedGoogle Scholar
  81. Sarkar A, Sreenivasan Y, Ramesh GT et al (2004) Beta-d-glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kappa B but potentiates apoptosis. J Biol Chem 279(32):33768–33781CrossRefPubMedGoogle Scholar
  82. Sato Y, Sasaki N, Saito M et al (2015) Luteolin attenuates doxorubicin-induced cytotoxicity to MCF-7 human breast cancer cells. Biol Pharm Bull 38(5):703–709CrossRefPubMedGoogle Scholar
  83. Satoh H, Nishikawa K, Suzuki K et al (2003) Genistein, a soy isoflavone, enhances necrotic-like cell death in a breast cancer cell treated with a chemotherapeutic agent. Res Commun Mol Pathol Pharmacol 113–114:149–158PubMedGoogle Scholar
  84. Seelinger G, Merfort I, Woelfle U et al (2008) Anti-carcinogenic effects of the flavonoid luteolin. Molecules 13(10):2628–2651CrossRefPubMedPubMedCentralGoogle Scholar
  85. Selles AJN, Daglia M, Rastrelli L (2016) The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. BioFactors 42(5):475–491CrossRefGoogle Scholar
  86. Shang W, Lu W, Han M et al (2014) The interactions of anticancer agents with tea catechins: current evidence from preclinical studies. Anticancer Agents Med Chem 14(10):1343–1350CrossRefPubMedGoogle Scholar
  87. Shanmugam MK, Rane G, Kanchi MM et al (2015) The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20(2):2728–2769CrossRefPubMedPubMedCentralGoogle Scholar
  88. Shanmugam M, Arfuso F, Sng JC et al (2018) Epigenetic effects of curcumin in cancer prevention. In: Anupam B, Deepak B (eds) Epigenetics of Cancer Prevention, vol 8. Academic Press, pp 107–128.
  89. Shi G, Li Y, Cao Q et al (2019) In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother 109:1085–1099CrossRefPubMedGoogle Scholar
  90. Singh CK, Siddiqui IA, El-Abd S et al (2016) Combination chemoprevention with grape antioxidants. Mol Nutr Food Res 60(6):1406–1415CrossRefPubMedPubMedCentralGoogle Scholar
  91. Srinivas NR (2015) Recent trends in preclinical drug–drug interaction studies of flavonoids—review of case studies, issues and perspectives. Phytother Res 29(11):1679–1691CrossRefPubMedGoogle Scholar
  92. Staedler D, Idrizi E, Kenzaoui BH et al (2011) Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol 68(5):1161–1172CrossRefPubMedGoogle Scholar
  93. Telli ML, Sledge GW (2015) The future of breast cancer systemic therapy: the next 10 years. J Mol Med 93(2):119–125CrossRefPubMedGoogle Scholar
  94. Tu SH, Chiou YS, Kalyanam N et al (2017) Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA(2) and NF-kappa B/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct 8(3):1067–1079CrossRefPubMedGoogle Scholar
  95. Walker GA, Kaidar-Person O, Kuten A et al (2012) Radiotherapy as sole adjuvant treatment for older patients with low-risk breast cancer. Breast 21(5):629–634CrossRefPubMedGoogle Scholar
  96. Wang H, Quan K, Jiang Y et al (2010) Effect of luteolin and its combination with chemotherapeutic drugs on cytotoxicity of cancer cells. Zhejiang Da Xue Xue Bao Yi Xue Ban 39(1):30–36PubMedGoogle Scholar
  97. Wang X, Li X, Yang L et al (2013) Advance on isolation and purification of xanthohumol from hops (Humulus lupulus L.). Food Ferment Ind 39(9):143–149Google Scholar
  98. Wang Y, Yu J, Cui R et al (2016) Curcumin in treating breast cancer: a review. Jala 21(6):723–731PubMedGoogle Scholar
  99. Williams MT, Hord NG (2005) The role of dietary factors in cancer prevention: beyond fruits and vegetables. Nutr Clin Pract 20(4):451–459CrossRefPubMedGoogle Scholar
  100. Xue J, Wang G, Zhao Z et al (2014) Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells. Oncol Rep 32(4):1647–1653CrossRefPubMedGoogle Scholar
  101. Yang K, Chan CB (2017) Proposed mechanisms of the effects of proanthocyanidins on glucose homeostasis. Nutr Rev 75(8):642–657CrossRefPubMedGoogle Scholar
  102. Yang MY, Wang CJ, Chen NF et al (2014) Luteolin enhances paclitaxel-induced apoptosis in human breast cancer MDA-MB-231 cells by blocking STAT3. Chem Biol Interact 213:60–68CrossRefPubMedGoogle Scholar
  103. Yang N, Gao J, Cheng X et al (2017) Grape seed proanthocyanidins inhibit the proliferation, migration and invasion of tongue squamous cell carcinoma cells through suppressing the protein kinase B/nuclear factor-kappa B signaling pathway. Int J Mol Med 40(6):1881–1888PubMedPubMedCentralGoogle Scholar
  104. Yang H, Bai W, Gao L et al (2018) Mangiferin alleviates hypertension induced by hyperuricemia via increasing nitric oxide releases. J Pharmacol Sci 137(2):154–161CrossRefPubMedGoogle Scholar
  105. Yoo YB, Park KS, Kim JB et al (2014) Xanthohumol inhibits cellular proliferation in a breast cancer cell line (MDA-MB231) through an intrinsic mitochondrial-dependent pathway. Indian J Cancer 51(4):518–U401CrossRefPubMedGoogle Scholar
  106. Zhan Y, Chen Y, Liu R et al (2014) Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling. Arch Pharmacal Res 37(8):1086–1095CrossRefGoogle Scholar
  107. Zhong Z, Dang Y, Yuan X et al (2012a) Furanodiene, a natural product, inhibits breast cancer growth both in vitro and in vivo. Cell Physiol Biochem 30(3):778–790CrossRefPubMedGoogle Scholar
  108. Zhong Z, Li Y, Wang S et al (2012b) Furanodiene enhances tamoxifen-induced growth inhibitory activity of ERa-positive breast cancer cells in a PPAR gamma independent manner. J Cell Biochem 113(8):2643–2651CrossRefPubMedGoogle Scholar
  109. Zhong Z, Tan W, Chen X et al (2014) Furanodiene, a natural small molecule suppresses metastatic breast cancer cell migration and invasion in vitro. Eur J Pharmacol 737:1–10CrossRefPubMedGoogle Scholar
  110. Zhong Z, Qiang W, Wang C et al (2016a) Furanodiene enhances the anti-cancer effects of doxorubicin on ER alpha-negative breast cancer cells in vitro. Eur J Pharmacol 774:10–19CrossRefPubMedGoogle Scholar
  111. Zhong Z, Tan W, Qiang WW et al (2016b) Furanodiene alters mitochondrial function in doxorubicin-resistant MCF-7 human breast cancer cells in an AMPK-dependent manner. Mol BioSyst 12(5):1626–1637CrossRefPubMedGoogle Scholar
  112. Zhong Z, Tan W, Tian K et al (2017a) Combined effects of furanodiene and doxorubicin on the migration and invasion of MDA-MB-231 breast cancer cells in vitro. Oncol Rep 37(4):2016–2024CrossRefPubMedGoogle Scholar
  113. Zhong Z, Yu H, Wang C et al (2017b) Furanodiene induces extrinsic and intrinsic apoptosis in doxorubicin-resistant MCF-7 breast cancer cells via NF-kappa B-independent mechanism. Front Pharmacol 8:648CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zhong Z, Yu H, Wang S et al (2018) Anti-cancer effects of Rhizoma Curcumae against doxorubicin-resistant breast cancer cells. Chin Med 13:44CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhou Q, Wang X, Liu X et al (2011) Curcumin enhanced antiproliferative effect of mitomycin C in human breast cancer MCF-7 cells in vitro and in vivo. Acta Pharmacol Sin 32(11):1402–1410CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zhou Q, Ye M, Lu Y et al (2015) Curcumin improves the tumoricidal effect of mitomycin C by suppressing ABCG2 expression in stem cell-like breast cancer cells. PLoS ONE 10(8):e0136694CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zhou Q, Sun Y, Lu Y et al (2017) Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int 17:84CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijingChina

Personalised recommendations