Phytotoxins produced by pathogenic fungi of agrarian plants

  • Antonio EvidenteEmail author
  • Alessio Cimmino
  • Marco Masi


This review, covering the literature from 1965 to present (2018), treats of phytotoxins produced by fungi responsible of heavy diseases of important agrarian crops, including legumes, cereals, fruit trees, vegetables and crops for oil seed production. The symptoms induced on the infected plants are reported and the heavy economical losses caused by the diseases were also described. The chemical characterization and biological activity of the fungal phytotoxins, belonging to the different classes of natural compounds, is reported. In some cases, the probable role played by phytotoxins in the induction of plant disease symptoms is described as well as the results of structure–activity relationship and mode of action studies. The potential application in agriculture and in medicine for some of them is also discussed highlighting the increase in safety and the practical advantages.


Agrarian plant diseases Phytopathogenic fungi Phytotoxins Biological activities 



Antonio Evidente is associated to the “Istituto di Chimica Biomolecolare” of CNR, Pozzuoli, Italy.


  1. Abbas HK, Duke SO (1995) Phytotoxins from plant pathogens as potential herbicides. J Toxicol Toxin Rev 14:523–543CrossRefGoogle Scholar
  2. Adesogan EK, Alo BI (1979) Oxysporone, a new metabolite from Fusarium oxysporum. Phytochemistry 18:1886–1887CrossRefGoogle Scholar
  3. Alam SS, Bilton JN, Slawin AM et al (1989) Chickpea blight: production of the phytotoxins solanapyrones A and C by Ascochyta rabiei. Phytochemistry 28:2627–2630CrossRefGoogle Scholar
  4. Andolfi A, Evidente A, Santini A et al (2006) Ophiobolin A. Acta Crystallogr Sect E Struct Rep Online 62:o2195–o2197CrossRefGoogle Scholar
  5. Andolfi A, Cimmino A, Evidente A et al (2009) A new flow cytometry technique to identify Phaeomoniella chlamydospora exopolysaccharides and study mechanisms of esca grapevine foliar symptoms. Plant Dis 93:680–6844CrossRefPubMedGoogle Scholar
  6. Andolfi A, Cimmino A, Villegas-Fernádez AM et al (2013) Lentisone, a new phytotoxic anthraquinone produced by Ascochyta lentis, the causal agent of Ascochyta Blight in Lens culinaris. J Agric Food Chem 61:7301–7308CrossRefPubMedGoogle Scholar
  7. Andolfi A, Maddau L, Cimmino A et al (2014) Lasiojasmonates A–C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen. Phytochemistry 103:145–153CrossRefPubMedGoogle Scholar
  8. Araújo SS, Beebe S, Crespi M et al (2014) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34(1–3):237–280Google Scholar
  9. Au TK, Chick WS, Leung PC (2000) The biology of ophiobolins. Life Sci 67:733–742CrossRefPubMedGoogle Scholar
  10. Ayer WA, Pena-Rodriguez LM (1987a) Metabolites produced by Alternaria brassicae, the black spot pathogen of canola. Part 1, the phytotoxic components. J Nat Prod 50:400–407CrossRefGoogle Scholar
  11. Ayer WA, Pena-Rodriguez LM (1987b) Metabolites produced by Alternaria brassicae, the black spot pathogen of canola. Part 2, sesquiterpenoid metabolites. J Nat Prod 50:408–417CrossRefGoogle Scholar
  12. Aznar-Fernández T, Cimmino A, Masi M et al (2018) Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid (Acyrthosiphon pisum) as potential biocontrol strategy. Nat Prod Res 29:1–9CrossRefGoogle Scholar
  13. Bailey JA, Jeger MJ (1992) Colletotrichum: biology, pathology and control. CAB International, WallingfordGoogle Scholar
  14. Bains PS, Tewari JP (1987) Purification, chemical characterization and host-specificity of the toxin produced by Alternaria brassicae. Physiol Mol Plant Pathol 30:259–271CrossRefGoogle Scholar
  15. Bajsa J, Singh K, Nanayakkara D et al (2007) A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimalarial compounds. Biol Pharm Bull 30:1740–1744CrossRefPubMedGoogle Scholar
  16. Balde ES, Andolfi A, Bruyère C et al (2010) Investigations of fungal secondary metabolites with potential anticancer activity. J Nat Prod 73:969–971CrossRefPubMedGoogle Scholar
  17. Ballio A, Graniti A (1991) Phytotoxins and their involvement in plant disease. Experientia 47:751–864CrossRefGoogle Scholar
  18. Ballio A, Brufani M, Casinovi CG et al (1968) The structure of fusicoccin A. Cell Mol Life Sci 24:631–635CrossRefGoogle Scholar
  19. Bani M, Cimmino A, Evidente A et al (2018) Pisatin involvement in the variation of inhibition of Fusarium oxysporum f. sp. pisi spore germination by root exudates of Pisum spp. germplasm. Plant Pathol 67:1046–1054CrossRefGoogle Scholar
  20. Barash I, Manulis S, Kashman Y et al (1983) Crystallization and X-ray analysis of stemphyloxin I, a phytotoxin from Stemphylium botryosum. Science 220:1065–1066CrossRefPubMedGoogle Scholar
  21. Barilli E, Cimmino A, Masi M et al (2017) Inhibition of early development stages of rust fungi by the two fungal metabolites cyclopaldic acid and epi-epoformin. Pest Manag Sci 73:1161–1168CrossRefPubMedGoogle Scholar
  22. Baroncelli R, Sanz-Martín JM, Rech GE et al (2014) Draft genome sequence of Colletotrichum sublineola, a destructive pathogen of cultivated sorghum. Genome Announc 2:e00540-14CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bender CL (1998) Bacterial phytotoxin. Methods Microbiol 27:169–175CrossRefGoogle Scholar
  24. Bender CL, Alarcón-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292PubMedPubMedCentralGoogle Scholar
  25. Bennett J, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516CrossRefPubMedPubMedCentralGoogle Scholar
  26. Berestetskiy AO (2008) A review of fungal phytotoxins: from basic studies to practical use. Appl Biochem Microbiol 44:453CrossRefGoogle Scholar
  27. Beuzer P, Axelrod J, Trzoss L et al (2016) Single dish gradient screening of small molecule localization. Org Biomol Chem 14:8241–8245CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bhatnagar-Mathur P, Palit P et al (2012) Grain legumes: biotechnological interventions in crop improvement for adverse environments. In: Tuteja N, Singh Gill S, Tuteja R (eds) Improving crop productivity in sustainable agriculture. Wiley, Weinheim, pp 381–409CrossRefGoogle Scholar
  29. Bhattacharya D, Siddiqui KA, Ali E (1992a) Phytotoxic metabolites of Macrophomina phaseolina. Indian J Mycol Plant Pathol 22:54–57Google Scholar
  30. Bhattacharya D, Dhar TK, Ali E (1992b) An enzyme immunoassay of phaseolinone and its application in estimation of the amount of toxin in Macrophomina phaseolina-infected seeds. Appl Environ Microbiol 58:1970–1974PubMedPubMedCentralGoogle Scholar
  31. Bode HB, Walker M, Zeeck A (2000) Structure and biosynthesis of mutolide, a novel macrolide from a UV mutant of the fungus F-24′ 707. Eur J Org Chem 8:1451–1456CrossRefGoogle Scholar
  32. Bousquet JF, Franqueville HBD, Kollmann A, Fritz R (1980) Action de la septorine, phytotoxine synthetisée par Septoria nodorum, sur la phosphorylation oxydative dans les mitochondries isolées de coleoptiles de blé. Can J Bot 58:2575–2580CrossRefGoogle Scholar
  33. Bury M, Girault A, Megalizzi V et al (2013) Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death Dis 4:561CrossRefGoogle Scholar
  34. Canonica L, Fiecchi A, Galli Kienle M et al (1966a) The costitution of cochliobolin. Tetrahedron Lett 7:1211–1218CrossRefGoogle Scholar
  35. Canonica L, Fiecchi A, Galli Kienle M et al (1966b) Isolation and constitution of cochliobolin. Tetrahedron Lett 7:1329–1333CrossRefGoogle Scholar
  36. Cimmino A, Villegas-Fernández AM, Andolfi A et al (2011) Botrytone, a new naphthalenone pentaketide produced by Botrytis fabae, the causal agent of chocolate spot disease on Vicia faba. J Agric Food Chem 59:9201–9206CrossRefPubMedGoogle Scholar
  37. Cimmino A, Andolfi A, Fondevilla S et al (2012) Pinolide, a new nonenolide produced by Didymella pinodes, the causal agent of Ascochyta blight on Pisum sativum. J Agric Food Chem 60:5273–5278CrossRefPubMedGoogle Scholar
  38. Cimmino A, Andolfi A, Avolio F et al (2013) Cyclopaldic acid, seiridin, and sphaeropsidin A as fungal phytotoxins, and larvicidal and biting deterrents against Aedes aegypti (Diptera: Culicidae): structure–activity relationships. Chem Biodiv 10:1239–1251CrossRefGoogle Scholar
  39. Cimmino A, Fernández-Aparicio M, Andolfi A et al (2014) Effect of fungal and plant metabolites on broomrapes (Orobanche and Phelipanche spp.) seed germination and radicle growth. J Agric Food Chem 62(43):10485–10492CrossRefPubMedGoogle Scholar
  40. Cimmino A, Masi M, Evidente M et al (2015a) Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Nat Prod Rep 32:1629–1653CrossRefPubMedGoogle Scholar
  41. Cimmino A, Masi M, Evidente M et al (2015b) Fungal phytotoxins with potential herbicidal activity to control Chenopodium album. Nat Prod Commun 10:1119–1126PubMedGoogle Scholar
  42. Cimmino A, Evidente M, Masi M et al (2015c) Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti (Diptera: Culicidae): structure–activity relationships. Med Chem Res 24:3981–3989CrossRefGoogle Scholar
  43. Cimmino A, Masi M, Evidente M et al (2017) Application of Mosher’s method for absolute configuration assignment to bioactive plants and fungi metabolites. J Pharm Biomed Anal 144:59–89CrossRefPubMedGoogle Scholar
  44. Cimmino A, Nocera P, Linaldeddu BT et al (2018) Phytotoxic metabolites produced by Diaporthella cryptica, the vausal agent of hazelnut branch canker. J Agric Food Chem 66:3435–3442CrossRefPubMedGoogle Scholar
  45. Ciuffetti LM, Tuori RP (1999) Advances in the characterization of the Pyrenophora tritici-repentis-wheat interaction. Phytopathology 89:444–449CrossRefPubMedGoogle Scholar
  46. Coley-Smith JR, Verhoeff K, Jarvis WR (1980) The biology of Botrytis. Academic Press, LondonGoogle Scholar
  47. Collado IG, Aleu J, Hernández-Galán R et al (2000) Botrytis species an intriguing source of metabolites with a wide range of biological activities. Structure, chemistry and bioactivity of metabolites isolated from Botrytis species. Curr Org Chem 4:1261–1286CrossRefGoogle Scholar
  48. Colmenares AJ, Durán-Patrón RM, Hernández-Galán R et al (2002) Four new lactones from Botrytis cinerea. J Nat Prod 65:1724–1726CrossRefPubMedGoogle Scholar
  49. Colombo L, Gennari C, Scolastico C et al (1979) Biosynthesis of ascochitine: incorporation studies with advanced precursors. J Chem Soc Chem Commun 11:492–493CrossRefGoogle Scholar
  50. Colombo L, Gennari C, Ricca GS (1980) Biosynthetic origin and revised structure of ascochitine, a phytotoxic fungal metabolite. Incorporation of [1-13C]-and [1, 2-13C2]-acetates and [Me-13C] methionine. J Chem Soc Perkin Trans 1:675–676CrossRefGoogle Scholar
  51. Corsaro MM, De Castro C, Evidente A et al (1998a) Phytotoxic extracellular polysaccharide fractions from Cryphonectria parasitica (Murr.) Barr1 strains. Carbohydr Polym 37:167–172CrossRefGoogle Scholar
  52. Corsaro MM, De Castro C, Evidente A et al (1998b) Chemical structure of two phytotoxic exopolysaccharides produced by Phomopsis foeniculi. Carbohydr Res 308:349–357CrossRefPubMedGoogle Scholar
  53. Coval SJ, Hradil CM, Lu HS et al (1990) Pyrenoline-A and-B, two new phytotoxins from Pyrenophora teres. Tetrahedron Lett 31:2117–2120CrossRefGoogle Scholar
  54. Crouch JA, Beirn LA (2009) Anthracnose of cereals and grasses. Fungal Div 39:19–44Google Scholar
  55. Cutler HG, Crumley FG, Cox RH et al (1982) Prehelminthosporol and prehelminthosporol acetate: plant growth regulating properties. J Agric Food Chem 30:658–662CrossRefGoogle Scholar
  56. D’mello JPF, Placinta CM, Macdonald AMC (1999) Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim Feed Sci Technol 80:183–205CrossRefGoogle Scholar
  57. Dahmen-Levinson U, Levinson S, Mallwitz F et al (2006) Fluorescence polarization - a rapid and reliable technique to quantity the Mycotoxin contamination study for zearalenoue (ZON). PP 104. Book of Abstracts. In: International conference on “advances on genomics, biodiversity and rapid systems for detection of toxigenic fungi and mycotooxins”, Monopoli (Bari), Italy, September 26–29Google Scholar
  58. de Napoli L, Messere A, Palomba D et al (2000) Studies toward the synthesis of pinolidoxin, a phytotoxic nonenolide from the fungus Ascochyta pinodes. Determination of the configuration at the C-7, C-8, and C-9 chiral centers and stereoselective synthesis of the C6-C18 fragment. J Org Chem 65:3432–3442CrossRefPubMedGoogle Scholar
  59. De Stefano S, Nicoletti R (1999) Pachybasin and chrysophanol, two anthraquinones produced by the fungus Trichoderma aureoviride. Il Tabacco 7:21–24Google Scholar
  60. Deighton N, Muckenschnabel I, Colmenares AJ et al (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57:689–692CrossRefPubMedGoogle Scholar
  61. Del Sorbo G, Evidente A, Scala F (1994) Production of polyclonal antibodies for cyclopaldic acid, a major phytotoxic metabolite produced by the plant pathogen Seiridium cupressi. Nat Toxins 2:136–140CrossRefPubMedGoogle Scholar
  62. Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50CrossRefPubMedGoogle Scholar
  63. Dhar TK, Siddiqui KA, Ali E (1982) Structure of phaseolinone, a novel phytotoxin from Macrophomina phaseolina. Tetrahedron Lett 23:5459–5462Google Scholar
  64. Dhingra OD, Sinclair JB (1974) Isolation and partial purification of a phytotoxin produced by Macrophomina phaseolina. J Phytopathol 80:35–40CrossRefGoogle Scholar
  65. Durbin RD (1990) Biochemistry of non-host-selective phytotoxins. In: ACS symposium series. American Chemical Society (USA)Google Scholar
  66. Durbin RD (1991) Bacterial phytotoxins: mechanisms of action. Experientia 47:776–783CrossRefGoogle Scholar
  67. Duval J, Pecher V, Poujol M et al (2016) Research advances for the extraction, analysis and uses of anthraquinones: a review. Ind Crops Prod 94:812–833CrossRefGoogle Scholar
  68. Evidente A, Motta A (2001) Phytotoxins from fungi, pathogenic for agrarian, forestal and weedy plants. In: Tringali C (ed) Bioactive compounds from natural sources. Taylor & Francis, London, pp 473–526Google Scholar
  69. Evidente A, Motta A (2002) Bioactive metabolites from phytopathogenic bacterial and plants. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 2. Elsevier, Amsterdam, pp 581–628Google Scholar
  70. Evidente A, Iacobellis NS, Scopa A et al (1990) Isolation of β-phenyllactic acid related compounds from Pseudomonas syringae. Phytochemistry 29:1491–1497CrossRefGoogle Scholar
  71. Evidente A, Capasso R, Abouzeid MA et al (1993a) Three new toxic pinolidoxins from Ascochyta pinodes. J Nat Prod 56:1937–1943CrossRefGoogle Scholar
  72. Evidente A, Capasso R, Vurro M et al (1993b) Ascosalitoxin, a phytotoxic trisubstituted salicylic aldehyde from Ascochyta pisi. Phytochemistry 34:995–998CrossRefGoogle Scholar
  73. Evidente A, Lanzetta R, Capasso R et al (1993c) Pinolidoxin, a phytotoxic nonenolide from Ascochyta pinodes. Phytochemistry 34:999–1003CrossRefGoogle Scholar
  74. Evidente A, Lanzetta R, Abouzeid MA et al (1994) Foeniculoxin, a new phytotoxic geranylhydroquinone from Phomopsis foeniculi. Tetrahedron 50:10371–10378CrossRefGoogle Scholar
  75. Evidente A, Lanzetta R, Capasso R et al (1995) Putaminoxin, a phytotoxic nonenolide from Phoma putaminum. Phytochemistry 40:1637–1641CrossRefGoogle Scholar
  76. Evidente A, Andolfi A, D’Apice L et al (1997a) Identification by flow cytometry of seiridin, one of the main phytotoxins produced by three Seiridium species pathogenic to cypress. Nat Toxins 5:14–19CrossRefPubMedGoogle Scholar
  77. Evidente A, Lanzetta R, Capasso R et al (1997b) Putaminoxins B and C from Phoma putaminum. Phytochemistry 44:1041–1045CrossRefGoogle Scholar
  78. Evidente A, Capasso R, Andolfi A et al (1998a) Putaminoxins D and E from Phoma putaminum. Phytochemistry 48:941–945CrossRefGoogle Scholar
  79. Evidente A, Capasso R, Andolfi A et al (1998b) Structure–activity relationship studies of putaminoxins and pinolidoxins: phytotoxic nonenolides produced by phytopathogenic Phoma and Ascochyta species. Nat Toxins 6:183–188CrossRefPubMedGoogle Scholar
  80. Evidente A, Andolfi A, Cimmino A et al (2006a) Herbicidal potential of ophiobolins produced by Drechslera gigantea. J Agric Food Chem 54:1779–1783CrossRefPubMedGoogle Scholar
  81. Evidente A, Andolfi A, Cimmino A et al (2006b) Ophiobolin E and 8-epi-ophiobolin J produced by Drechslera gigantea, a potential mycoherbicide of weedy grasses. Phytochemistry 67:2281–2287CrossRefPubMedGoogle Scholar
  82. Evidente A, Cimmino A, Berestetskiy A et al (2007) Stagonolides B-F, nonenolides produced by Stagonospora cirsii, a potential mycoherbicide of Cirsium arvense. J Nat Prod 71:31–34CrossRefPubMedGoogle Scholar
  83. Evidente A, Cimmino A, Berestetskiy A et al (2008) Stagonolides G-I and modiolide A, nonenolides produced by Stagonospora cirsii, a potential mycoherbicide for Cirsium arvense. J Nat Prod 71:1897–1901CrossRefPubMedGoogle Scholar
  84. Evidente A, Abouzeid AM, Andolfi A et al (2011a) Recent achievements in the bio-control of Orobanche infesting important crops in the Mediterranean basin. J Agric Sci Technol 1:461–483Google Scholar
  85. Evidente A, Andolfi A, Cimmino A (2011b) Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality 23:674–693CrossRefPubMedGoogle Scholar
  86. Evidente A, Andolfi A, Cimmino A (2011c) Fungal phytotoxins for control of Cirsium arvense and Sonchus arvensis. Pest Technol 5:1–7Google Scholar
  87. Evidente A, Rodeva R, Andolfi A et al (2011d) Phytotoxic polyketides produced by Phomopsis foeniculi, a strain isolated from diseased Bulgarian fennel. Eur J Plant Pathol 130:173–182CrossRefGoogle Scholar
  88. Evidente A, Superchi S, Cimmino A et al (2011e) Regiolone and isosclerone, two enantiomeric phytotoxic naphthalenone pentaketides: computational assignment of absolute configuration and its relationship with phytotoxic activity. Eur J Org Chem 28:5564–5570CrossRefGoogle Scholar
  89. Evidente A, Masi M, Linaldeddu BT, Franceschini A, Scanu B, Cimmino A, Andolfi A, Motta A, Maddau L (2012a) Afritoxinones A and B, dihydrofuropyran-2-ones produced by Diplodia africana the causal agent of branch dieback on Juniperus phoenicea. Phytochemistry 77:245–250CrossRefPubMedGoogle Scholar
  90. Evidente A, Zonno MC, Andolfi A et al (2012b) Phytotoxic α-pyrones produced by Pestalotiopsis guepinii, the causal agent of hazelnut twig blight. J Antibiot 65:203–206CrossRefPubMedGoogle Scholar
  91. Evidente A, Cimmino A, Andolfi A (2013) The effect of stereochemistry on the biological activity of natural phytotoxins, fungicides, insecticides and herbicides. Chirality 25:59–78CrossRefPubMedGoogle Scholar
  92. Evidente A, Kornienko A, Cimmino A et al (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31:617–627CrossRefPubMedGoogle Scholar
  93. Fajola AO (1978) Cercosporin, a phytotoxin from Cercospora spp. Physiol Plant Pathol 13:157–164CrossRefGoogle Scholar
  94. FAO (2017) The future of food and agriculture. Trends and challengesGoogle Scholar
  95. Fernández-Aparicio M, Cimmino A, Evidente A et al (2013) Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals. J Agric Food Chem 61:9797–9803CrossRefPubMedGoogle Scholar
  96. Fogliano V, Marchese A, Scaloni A et al (1998) Characterization of a 60 kDa phytotoxic glycoprotein produced by Phoma tracheiphila and its relation to malseccin. Physiol Mol Plant Pathol 53:149–161CrossRefGoogle Scholar
  97. Foley JA, Ramankutty N, Brauman KA, Cassidy ES et al (2001) Solutions for a cultivated planet. Nature 478:337–342CrossRefGoogle Scholar
  98. Fouillaud M, Venkatachalam M, Girard-Valenciennes E et al (2016) Anthraquinones and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar Drugs 14:64CrossRefPubMedCentralGoogle Scholar
  99. Fürstner A, Radkowski K, Wirtz C et al (2002) Total syntheses of the phytotoxic lactones herbarumin I and II and a synthesis-based solution of the pinolidoxin puzzle. J Am Chem Soc 124:7061–7069CrossRefPubMedGoogle Scholar
  100. Fürstner A, Nagano T, Müller C et al (2007) Total synthesis and evaluation of the actin-binding properties of microcarpalide and a focused library of analogues. Chem Eur J 13:1452–1462CrossRefPubMedGoogle Scholar
  101. Galbraith MN, Whalley WB (1971) The chemistry of fungi. Part LIX. The synthesis of (±)-ascochitine. J Chem Soc C Org 0:3557–3559CrossRefGoogle Scholar
  102. Ganassi S, Grazioso P, De Cristofaro A et al (2016) Long chain alcohols produced by Trichoderma citrinoviride have phagodeterrent activity against the bird cherry-oat aphid Rhopalosiphum padi. Front Microbiol 7:297CrossRefPubMedPubMedCentralGoogle Scholar
  103. García-Fortanet J, Murga J, Falomir E et al (2005) Stereoselective total synthesis and absolute configuration of the natural decanolides (−)-microcarpalide and (+)-lethaloxin. Identity of (+)-lethaloxin and (+)-pinolidoxin. J Org Chem 70:9822–9827CrossRefPubMedGoogle Scholar
  104. García-Pajón CM, Collado IG (2003) Secondary metabolites isolated from Colletotrichum species. Nat Prod Rep 20:426–431CrossRefPubMedGoogle Scholar
  105. Godfray HC, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 237:812–818CrossRefGoogle Scholar
  106. Hallock YF, Clardy J, Kenfield DS et al (1988) De-O-methyldiaporthin, a phytotoxin from Drechslera siccans. Phytochemistry 27:3123–3125CrossRefGoogle Scholar
  107. Harwooda JS, Cutler HG, Jacyno JM (1995) Nigrosporolide, a plant growth-inhibiting macrolide from the mould Nigrospora sphaerica. Nat Prod Lett 6:181–185CrossRefGoogle Scholar
  108. Höhl B, Weidemann C, Höhl U et al (1991) Isolation of solanapyrones A, B and C from culture filture and spore germination fluids of Ascochyta rabiei and aspects of phytotoxin action. J Phytopathol 132:193–206CrossRefGoogle Scholar
  109. Ichihara A, Oikawa H, Hashimoto M et al (1983a) A phytotoxin, betaenone C, and its related metabolites of Phoma betae Fr. Agric Biol Chem 47:2965–2967Google Scholar
  110. Ichihara A, Oikawa H, Hayashi K et al (1983b) Structures of betaenones A and B, novel phytotoxins from Phoma betae Fr. J Am Chem Soc 105:2907–2908CrossRefGoogle Scholar
  111. Ichihara A, Tazaki H, Sakamura S (1983c) Solanapyrones A, B and C, phytotoxic metabolites from the fungus Alternaria solani. Tetrahedron Lett 24:5373–5376CrossRefGoogle Scholar
  112. Ichihara A, Oikawa H, Hayashi K (1984a) 3-Deoxyaphidicolin and aphidicolin analogues as phytotoxins from Phoma betae. Agric Biol Chem 48:1687–1689Google Scholar
  113. Ichihara A, Sawamura S, Sakamura S (1984b) Structures of altiloxins A and B, phytotoxins from Phoma asparagi Sacc. Tetrahedron Lett 25:3209–3212CrossRefGoogle Scholar
  114. Ichihara A, Sawamura S, Kawakami Y, Sakamura S (1985) Dihydrogladiolic acid another phytotoxin from Phama asparagi Sacc. Agric Biol Chem 49:1891–1892Google Scholar
  115. Inoue Y, Mori R, Takahashi Y et al (2013) Identification and molecular mapping of a wheat gene for resistance to an unadapted isolate of Colletotrichum cereale. Phytopathology 103:575–582CrossRefPubMedGoogle Scholar
  116. Iwai I, Mishima H (1965) Consitution of ascochitine. Chem Ind 73:186–187Google Scholar
  117. Jestoi M (2008) Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—a review. Crit Rev Food Sci Nutr 48:21–49CrossRefPubMedGoogle Scholar
  118. Kimura Y, Kouge A, Nakamura K, Koshino H, Uzawa J, Fujioka S, Kawano T (1998) Pesthetoxin, a new phytotoxin produced by the gray blight fungus, Pestalotiopsis theae. Biosci Biotechnol Biochem 62:1624–1626CrossRefPubMedGoogle Scholar
  119. King JE, Cook RJ, Melville SC (1983) A review of Septoria disease of wheat and barley. Ann Appl Biol 103:345–347CrossRefGoogle Scholar
  120. Kunwar IK, Singh T, Sinclair JB (1985) Histopathology of mixed infections by Colletotrichum truncatum and Phomopsis spp. or Cercospora sojina in soybean seeds. Phytopathology 75:489–492CrossRefGoogle Scholar
  121. Locato V, Uzal EN, Cimini S et al (2015) Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. J Exp Bot 66:2991–3000CrossRefPubMedGoogle Scholar
  122. Logrieco A, Moretti A, Solfrizzo M (2009) Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2:129–140CrossRefGoogle Scholar
  123. Mahato SB, Siddiqui KA, Bhattacharya G et al (1987) Structure and stereochemistry of phaseolinic acid: a new acid from Macrophomina phaseolina. J Nat Prod 50:245–247CrossRefGoogle Scholar
  124. Malaguti G (1990) Half a century of a plant pathologist in a tropical country-Venezuela. Ann Rev Phytopathol 28:1–11CrossRefGoogle Scholar
  125. Mancilla G, Jimenez-Teja D, Femenia-Rios M et al (2009) Novel macrolide from wild strains of the phytopathogen fungus Colletotrichum acutatum. Nat Prod Commun 4:395–398PubMedGoogle Scholar
  126. Manning VA, Chu AL, Steeves JE et al (2009) A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. Mol Plant Microbe Interact 22:665–676CrossRefPubMedGoogle Scholar
  127. Masi M, Maddau L, Linaldeddu BT et al (2018a) Bioactive metabolites from pathogenic and endophytic fungi of forest trees. Curr Med Chem 25:208–252CrossRefPubMedGoogle Scholar
  128. Masi M, Cimmino A, Reveglia P et al (2018b) Advances on fungal phytotoxins and their role in grapevine trunk diseases. J Agric Food Chem 66:5948–5958CrossRefPubMedGoogle Scholar
  129. Masi M, Nocera P, Boari AM et al (2018c) Lathyroxins A and B, phytotoxic monosubstituted phenols isolated from Ascochyta lentis var. lathyri, a fungal pathogen of grass pea (Lathyrus sativus). J Nat Prod 81:1093–1097CrossRefPubMedGoogle Scholar
  130. Masi M, Nocera P, Zonno MC et al (2018d) Lentiquinones A, B, and C, phytotoxic anthraquinone derivatives isolated from Ascochyta lentis, a pathogen of lentil. J Nat Prod 81:2700–2709CrossRefPubMedGoogle Scholar
  131. Masi M, Dasari R, Evidente A et al (2019) Chemistry and biology of ophiobolin A and its congeners. Bioorg Med Chem Lett 29:859–869CrossRefPubMedGoogle Scholar
  132. Mateo R, Medina A, Mateo EM et al (2007) An overview of ochratoxin A in beer and wine. Int J Food Microbiol 119:79–83CrossRefPubMedGoogle Scholar
  133. Matern U, Strobel G, Shepard J (1978) Reaction to phytotoxins in a potato population derived from mesophyll protoplasts. Proc Natl Acad Sci USA 75:4935–4939CrossRefPubMedGoogle Scholar
  134. Mathur SB (1968) Production of toxins and pectolytc enzymes by two isolates of Sclerotium bataticola Taub. and their role in pathogenesis 1. J Phytopathol 62:327–333CrossRefGoogle Scholar
  135. Mazars C, Rossignol M, Auriol P, Klaebe A (1990) Phomozin, a phytotoxin from Phomopsis helianthi, the causal agent of stem canker of sunflower. Phytochemistry 29:3441–3444CrossRefGoogle Scholar
  136. Mazzeo G, Cimmino A, Andolfi A et al (2014) Computational ECD spectrum simulation of the phytotoxin scytalone: importance of solvent effects on conformer populations. Chirality 26:502–508CrossRefPubMedGoogle Scholar
  137. Mishra HN, Das C (2003) A review on biological control and metabolism of aflatoxin. Crit Rev Food Sci Nutr 43:245–264CrossRefPubMedGoogle Scholar
  138. Mittal S, Davis KR (1995) Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 8:165–171CrossRefPubMedGoogle Scholar
  139. Miyagawa H, Nagai S, Tsurushima T et al (1994) Phytotoxins produced by the plant pathogenic fungus Bipolaris bicolor El-1. Biosci Biotechnol Biochem 58:1143–1145CrossRefGoogle Scholar
  140. Moreau S, Lablache-Combier A, Biguet J et al (1982) Botryodiplodin, a mycotoxin synthesized by a strain of P. roqueforti. J Org Chem 47:2358–2359CrossRefGoogle Scholar
  141. Morrison R, Gardiner C, Evidente A et al (2014) Incorporation of ophiobolin A into novel chemoembolization particles for cancer cell treatment. Pharm Res 31:2904–2917CrossRefPubMedGoogle Scholar
  142. Morrison R, Lodge T, Evidente A et al (2017) Ophiobolin A, a sesterpenoid fungal phytotoxin, displays different mechanisms of cell death in mammalian cells depending upon the cancer cell origin. Int J Oncol 50:773–786CrossRefPubMedPubMedCentralGoogle Scholar
  143. Nagata T, Ando Y (1989) Oxysporone, a phytotoxin isolated from the tea gray blight fungus Pestalotia longiseta. Agric Biol Chem 53:2811Google Scholar
  144. Nagata T, Ando Y, Hirota A (1992) Phytotoxins from tea gray blight fungi, Pestalotiopsis longiseta and Pestalotiopsis theae. Biosci Biotechnol Biochem 56:810–811CrossRefPubMedGoogle Scholar
  145. Nakajima H, Isomi K, Hamasaki T (1994) Sorokinianin: a novel phytotoxin produced by the phytopathogenic fungus Bipolaris sorokiniana. Tetrahedron Lett 35:9597–9600CrossRefGoogle Scholar
  146. Nozoe S, Morisaki M, Tsuda K et al (1965) The structure of ophiobolin, a C25 terpenoid having a novel skeleton. J Am Chem Soc 87:4968–4970CrossRefPubMedGoogle Scholar
  147. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43CrossRefGoogle Scholar
  148. Oikawa H, Yokota T, Sakano C et al (1998) Solanapyrones, phytotoxins produced by Alternaria solani: biosynthesis and isolation of minor components. Biosci Biotechnol Biochem 62:2016–2022CrossRefPubMedGoogle Scholar
  149. Oku H, Nakanishi T (1966) Mode of action of an antibiotic, ascochitine, with reference to selective toxicity. J Phytopathol 55:1–14CrossRefGoogle Scholar
  150. Parisi A, Piattelli M, Tringali C et al (1993) Identification of the phytotoxin mellein in culture fluids of Phoma tracheiphila. Phytochemistry 32:865–867CrossRefGoogle Scholar
  151. Pedras MSC, Biesenthal CJ (1998) Production of the host-selective phytotoxin phomalide by isolates of Leptosphaeria maculans and its correlation with sirodesmin PL production. Can J Microbiol 44:547–553CrossRefGoogle Scholar
  152. Pedras MSC, Yu Y (2009) Phytotoxins, elicitors and other secondary metabolites from phytopathogenic “blackleg” fungi: structure, phytotoxicity and biosynthesis. Nat Prod Commun 4:1291–1304PubMedGoogle Scholar
  153. Pedras MSC, Abrams SR, Seguin-Swartz G, Quail JW, Jia Z (1989) Phomalirazine, a novel toxin from the phytopathogenic fungus Phoma lingam. J Am Chem Soc 111:1904–1905CrossRefGoogle Scholar
  154. Pedras MSC, Morales VM, Taylor JL (1993) Phomaligols and phomaligadiones: new metabolites from the blackleg fungus. Tetrahedron 49:8317–8322CrossRefGoogle Scholar
  155. Pedras MSC, Erosa-López CC, Quail JW, Taylor JL (1999) Phomalairdenone: a new host-selective phytotoxin from a virulent type of the blackleg fungus Phoma lingam. Bioorg Med Chem Lett 9:3291–3294CrossRefPubMedGoogle Scholar
  156. Pedras MSC, Chumala PB, Jin W, Islam MS, Hauck DW (2009) The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394–402CrossRefPubMedGoogle Scholar
  157. Pena-Rodriguez LM, Chilton WS (1989) 3-Anhydroophiobolin A and 3-anhydro-6-epi-ophiobolin A, phytotoxic metabolites of the Johnson grass pathogen Bipolaris sorghicola. J Nat Prod 52:1170–1172CrossRefGoogle Scholar
  158. Pena-Rodriguez LM, Armingeon NA, Chilton WS (1988) Toxins from weed pathogens, I. Phytotoxins from a Bipolaris pathogen of Johnson grass. J Nat Prod 51:821–828CrossRefPubMedGoogle Scholar
  159. Ponomarenko A, Goodwin SB, Kema GH (2011) Septoria tritici blotch (STB) of wheat. Plant Health Instructor. CrossRefGoogle Scholar
  160. Puopolo G, Cimmino A, Palmieri MC et al (2014) Lysobacter capsici AZ78 produces cyclo (L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and P. lasmopara. J Appl Microbiol 117:1168–1180CrossRefPubMedGoogle Scholar
  161. Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus–plant interactions. Front Plant Sci 6:573CrossRefPubMedPubMedCentralGoogle Scholar
  162. Ramezani M, Shier WT, Abbas HK et al (2007) Soybean charcoal rot disease fungus Macrophomina phaseolina in Mississippi produces the phytotoxin (−)-botryodiplodin but no detectable phaseolinone. J Nat Prod 70:128–129CrossRefPubMedGoogle Scholar
  163. Rivero-Cruz JF, García-Aguirre G, Cerda-García-Rojas CM et al (2000) Conformational behavior and absolute stereostructure of two phytotoxic nonenolides from the fungus Phoma herbarum. Tetrahedron 56:5337–5344CrossRefGoogle Scholar
  164. Rivero-Cruz JF, Macías M, Cerda-García-Rojas CM et al (2003) A new phytotoxic nonenolide from Phoma herbarum. J Nat Prod 66:511–514CrossRefPubMedGoogle Scholar
  165. Rogério F, Ciampi-Guillardi M, Barbieri MCG et al (2017) Phylogeny and variability of Colletotrichum truncatum associated with soybean anthracnose in Brazil. J Appl Microbiol 122:402–415CrossRefPubMedGoogle Scholar
  166. Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919CrossRefPubMedGoogle Scholar
  167. San Gupta R, Chandran RR, Divekar PV (1966) Botryodiplodin—a new antibiotic from Botryodiplodia theobromae. II. Production, isolation and biological properties. Indian J Exp Biol 4:152–153PubMedGoogle Scholar
  168. Sarpeleh A, Wallwork H, Catcheside DE et al (2007) Proteinaceous metabolites from Pyrenophora teres contribute to symptom development of barley net blotch. Phytopathology 97:907–915CrossRefPubMedGoogle Scholar
  169. Sarpeleh A, Wallwork H, Tate ME et al (2008) Initial characterisation of phytotoxic proteins isolated from Pyrenophora teres. Physiol Mol Plant Pathol 72:73–79CrossRefGoogle Scholar
  170. Sarrocco S, Diquattro S, Avolio F et al (2015) Bioactive metabolites from new or rare fimicolous fungi with antifungal activity against plant pathogenic fungi. Eur J Plant Pathol 142:61–71CrossRefGoogle Scholar
  171. Sassa T (1971) Cotylenines, leaf growth substances produced by fungus. Part I. Isolation and characterization of cotylenins. Agric Biol Chem 35:1415–1418Google Scholar
  172. Sassa T, Neguro T, Ueki H (1972) Production and characterization of a new fungal metabolite, cotylenol. Agric Biol Chem 36:2281–2285CrossRefGoogle Scholar
  173. Schatzmayr G, Zehner F, Täubel M et al (2006) Microbiologicals for deactivating mycotoxins. Mol Nutr Food Res 50:543–551CrossRefPubMedGoogle Scholar
  174. Schrader KK, Andolfi A, Cantrell CL et al (2010) A survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chem Biodiv 7:2261–2280CrossRefGoogle Scholar
  175. Seo CO, Oh HC, Lee HB et al (2007) Hexaketides from phytopathogenic fungus Paraphaeosphaeria recurvifoliae. Bull Korean Chem Soc 28:1803–1806CrossRefGoogle Scholar
  176. Siddiqui KAI, Gupta AK, Paul AK et al (1979) Purification and properties of a heat-resistant exotoxin produced by Macrophomina phaseolina (Tassi) Goid in culture. Experientia 35:1222–1223CrossRefPubMedGoogle Scholar
  177. Sinclair J (1982) Compendium of soyabean diseases. The American Phytopathological Society, St. PaulGoogle Scholar
  178. Stoessl A, Stothers JB (1986) Colletruncoic acid methyl ester, a unique meroterpenoid from Colletotrichum truncatum. Z. Naturforsch C 41:677–680CrossRefGoogle Scholar
  179. Strobel GA (1970) A phytotoxic glycopeptide from potato plants infected with Corynebacterium sepedonicum. J Biol Chem 245:32–38PubMedGoogle Scholar
  180. Strobel GA (1977) Bacterial phytotoxins. Ann Rev Microbiol 31:205–222CrossRefGoogle Scholar
  181. Strobel GA (1982) Phytotoxins. Ann Rev Biochem 51:309–333CrossRefPubMedGoogle Scholar
  182. Strobel GA, Kenfield D, Bunkers G et al (1991) Phytotoxins as potential herbicides. Experientia 47:819–826CrossRefGoogle Scholar
  183. Sugawara F, Strobel GA (1986) (−)-Dihydropyrenophorin, a novel and selective phytotoxin produced by Drechslera avenae. Plant Sci 43:1–5CrossRefGoogle Scholar
  184. Sugawara F, Takahashi N, Strobel GA et al (1988) Triticones A and B, novel phytotoxins from the plant pathogenic fungus Drechslera tritici-repentis. J Am Chem Soc 110:4086–4087CrossRefGoogle Scholar
  185. Sukno SA, García VM, Shaw BD et al (2008) Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl Environ Microbiol 74:823–832CrossRefPubMedGoogle Scholar
  186. Tabacchi R, Fkyerat A, Poliart C et al (2000) Phytotoxins from fungi of esca of grapevine. Phytopathol Mediterr 39:156–161Google Scholar
  187. Tian W, Deng Z, Hong K (2017) The biological activities of sesterterpenoid-type ophiobolins. Mar Drugs 15:229CrossRefPubMedCentralGoogle Scholar
  188. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264CrossRefPubMedGoogle Scholar
  189. Tringali C, Parisi A, Piattelli M et al (1993) Phomenins A and B, bioactive polypropionate pyrones from culture fluids of Phoma tracheiphila. Nat Prod Lett 3:101–106CrossRefGoogle Scholar
  190. Tscharntke T, Clough Y, Wanger TC et al (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59CrossRefGoogle Scholar
  191. Türkkan M, Andolfi A, Zonno MC et al (2011) Phytotoxins produced by Pestalotiopsis guepinii, the causal agent of hazelnut twig blight. Phytopathol Mediterr 50:154–158Google Scholar
  192. Van Broekhoven LW, Minderhoud L, Holland GJJ et al (1975) Purification and properties of a phytotoxic glycopeptide from Didymella applanata (Niessl) Sacc. J Phytopathol 83:49–56CrossRefGoogle Scholar
  193. Vaz-Patto MC, Rubiales D (2014) Lathyrus diversity: available resources with relevance to crop improvement—L. sativus and L. cicera as case studies. Ann Bot 113:895–908CrossRefPubMedPubMedCentralGoogle Scholar
  194. Venkatasubbaiah P, Van Dyke CG (1991) Phytotoxins produced by Pestalotiopsis oenotherae, a pathogen of evening primrose. Phytochemistry 30:1471–1474CrossRefGoogle Scholar
  195. Vurro M, Ellis BE (1997) Effect of fungal toxins on induction of phenylalanine ammonia-lyase activity in elicited cultures of hybrid poplar. Plant Sci 126:29–38CrossRefGoogle Scholar
  196. Vurro M, Zonno MC, Evidente A et al (1992) Isolation of cytochalasins A and B from Ascochyta lathyri. Mycotoxin Res 8:17–20CrossRefPubMedGoogle Scholar
  197. Weiergang I, Ørgensen JHL, Møller IM et al (2002) Optimization of in vitro growth conditions of Pyrenophora teres for production of the phytotoxin aspergillomarasmine A. Physiol Mol Plant Pathol 60:131–140CrossRefGoogle Scholar
  198. Weiler EW, Kutchan TM, Gorba T et al (1994) The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett 345:9–13CrossRefPubMedGoogle Scholar
  199. Wrather JA, Anderson TR, Arsyad DM et al (1997) Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Dis 81:107–110CrossRefPubMedGoogle Scholar
  200. Xia XK, Huang HR, She ZG et al (2007) 1H and 13C NMR assignments for five anthraquinones from the mangrove endophytic fungus Halorosellinia sp. (No. 1403). Magn Res Chem 45:1006–1009CrossRefGoogle Scholar
  201. Yuzikhin O, Mitina G, Berestetskiy A (2007) Herbicidal potential of stagonolide, a new phytotoxic nonenolide from Stagonospora cirsii. J Agric Food Chem 55:7707–7711CrossRefPubMedGoogle Scholar
  202. Zbyňovská K, Petruška P, Kalafová A et al (2016) Patulin-a contaminant of food and feed: a review. Acta Fytotechn Zootechn 19:64–67CrossRefGoogle Scholar
  203. Zhu T, Lu Z, Fan J et al (2018) Ophiobolins from the mangrove fungus Aspergillus ustus. J Nat Prod 81:2–9CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze ChimicheUniversità di Napoli Federico IINaplesItaly

Personalised recommendations