Advertisement

Anti-cancer activities of cytokinin ribosides

  • Jiří VollerEmail author
  • Tibor Béres
  • Marek Zatloukal
  • Petr Džubák
  • Marián Hajdúch
  • Karel Doležal
  • Thomas Schmülling
  • Strnad MiroslavEmail author
Article
  • 57 Downloads

Abstract

Cytokinins are plant hormones and play essential roles in regulating plant growth and development. They also have diverse pharmacological effects in animals and humans. Whereas cytokinin bases have been studied mainly for their cytoprotective activities, cytokinin ribosides have been explored as anti-cancer agents. Cytokinin ribosides inhibit growth or cause apoptosis in various cell lines derived from diverse malignancies including those with a mutant p53 gene. Activity against cancer stem cells, anti-angiogenic activity, and the ability to stimulate an immune response to malignant cells have been reported as well. There are also positive results from in vivo studies and reports of activity in patients with hematological malignancies and solid tumors. Here, we review studies of the anti-cancer activity of cytokinin ribosides since the 1960s and comment on the issues that need to be addressed for the further development of cytokinin ribosides into anti-cancer drugs.

Keywords

Cytokinin Cytokinin riboside Cancer Anti-cancer drug 

Abbreviations

A3R

Adenosine receptor A3

ADA

Adenosine deaminase

ADK

Adenosine kinase

AMPK

AMP-activated protein kinase

BAR

N6-benzyladenosine

BAR5′MP

N6-benzyladenosine-5′-monophosphate

CKR

Cytokinin riboside

CKR5′MP

Cytokinin riboside-5′-monophosphate

DNPH1

2′-Deoxynucleoside 5′-phosphate N-hydrolase 1

FPPS

Farnesyl pyrophosphate synthase

iPR

N6-isopentenyladenosine

iPR5′MP

N6-isopentenyladenosine-5′-monophosphate

KR

Kinetin riboside

KR5′TP

Kinetin riboside-5′-triphosphate

2OH3MeOBAR

N6-(2-hydroxy-3-methoxybenzyl)adenosine

oTR

Ortho-topolin riboside

Notes

Acknowledgements

This study was partially supported by the Ministry of Education, Youth and Sports of the Czech Republic (GACR Grant Nos. 17-14007S, NPU I LO1304, and OP VVV project ENOCH CZ.02.1.01/0.0/0.0/16_019/0000868).

Supplementary material

11101_2019_9620_MOESM1_ESM.pdf (394 kb)
Supplementary material 1 (PDF 394 kb)

References

  1. Amiable C, Pochet S, Padilla A et al (2013) N6-substituted AMPs inhibit mammalian deoxynucleotide N-hydrolase DNPH1. PLoS ONE 8:e80755.  https://doi.org/10.1371/journal.pone.0080755 CrossRefGoogle Scholar
  2. Barciszewski J, Siboska GE, Pedersen BO et al (1996) Evidence for the presence of kinetin in DNA and cell extracts. FEBS Lett 393:197–200.  https://doi.org/10.1016/0014-5793(96)00884-8 CrossRefGoogle Scholar
  3. Barciszewski J, Mielcarek M, Stobiecki M et al (2000) Identification of 6-furfuryladenine (kinetin) in human urine. Biochem Biophys Res Commun 279:69–73.  https://doi.org/10.1006/bbrc.2000.3928 CrossRefGoogle Scholar
  4. Béres T, Zatloukal M, Voller J et al (2010) Tandem mass spectrometry identification and LC-MS quantification of intact cytokinin nucleotides in K-562 human leukemia cells. Anal Bioanal Chem 398:2071–2080.  https://doi.org/10.1007/s00216-010-4126-5 CrossRefGoogle Scholar
  5. Berge U, Kristensen P, Rattan SIS (2006) Kinetin-induced differentiation of normal human keratinocytes undergoing aging in vitro. Ann N Y Acad Sci 1067:332–336.  https://doi.org/10.1196/annals.1354.045 CrossRefGoogle Scholar
  6. Bifulco M, Malfitano AM, Proto MC et al (2008) Biological and pharmacological roles of N6-isopentenyladenosine: an emerging anticancer drug. Anticancer Agents Med Chem 8(2):200–204CrossRefGoogle Scholar
  7. Blad CC, von Drabbe Künzel JKF, de Vries H et al (2011) Putative role of the adenosine A3 receptor in the antiproliferative action of N6-(2-isopentenyl)adenosine. Purinergic Signal 7:453–462.  https://doi.org/10.1007/s11302-011-9244-9 CrossRefGoogle Scholar
  8. Bowie LE, Maiuri T, Alpaugh M et al (2018) N6-Furfuryladenine is protective in Huntington’s disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci 115:E7081–E7090.  https://doi.org/10.1073/pnas.1801772115 CrossRefGoogle Scholar
  9. Cabello CM, Bair WB, Ley S et al (2009) The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A (p21) upregulation in human cancer cell lines. Biochem Pharmacol 77:1125–1138.  https://doi.org/10.1016/j.bcp.2008.12.002 CrossRefGoogle Scholar
  10. Carimi F, Zottini M, Formentin E et al (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421.  https://doi.org/10.1007/s00425-002-0862-x Google Scholar
  11. Carimi F, Zottini M, Costa A et al (2005) NO signalling in cytokinin-induced programmed cell death. Plant, Cell Environ 28:1171–1178.  https://doi.org/10.1111/j.1365-3040.2005.01355.x CrossRefGoogle Scholar
  12. Caruso MG, Malfitano AM, Gazzerro P et al (2008) N6-isopentenyladenosine inhibits cell proliferation and induces apoptosis in a human colon cancer cell line DLD1. Int J Cancer 124:1322–1329.  https://doi.org/10.1002/ijc.24056 Google Scholar
  13. Castiglioni S, Ciuffreda P, Casati S et al (2013) N6-isopentenyladenosine and its analogue N6-benzyladenosine induce cell cycle arrest and apoptosis in bladder carcinoma T24 cells. Anticancer Agents Med Chem 13:672–678.  https://doi.org/10.2174/1871520611313040016 CrossRefGoogle Scholar
  14. Cheong J, Goh D, Wan Hong Yong J et al (2009) Inhibitory effect of kinetin riboside in human heptamoa, HepG2. Mol BioSyst 5:91–98.  https://doi.org/10.1039/b712807j CrossRefGoogle Scholar
  15. Chheda GB, Mittelman A (1972) N6-(2-isopentenyl)adenosine metabolism in man. Biochem Pharmacol 21:27–37CrossRefGoogle Scholar
  16. Choi BH, Kim W, Wang QC et al (2008) Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Lett 261:37–45.  https://doi.org/10.1016/j.canlet.2007.11.014 CrossRefGoogle Scholar
  17. Ciaglia E, Laezza C, Abate M et al (2018) Recognition by natural killer cells of N6-isopentenyladenosine-treated human glioma cell lines. Int J Cancer 142:176–190.  https://doi.org/10.1002/ijc.31036 CrossRefGoogle Scholar
  18. Colombo F, Santaniello E, Weisz A et al (2009) Pharmacogenomics and analogues of the antitumour agent N6-isopentenyladenosine. Int J Cancer 124:2179–2185.  https://doi.org/10.1002/ijc.24168 CrossRefGoogle Scholar
  19. Concannon CG, Koehler BF, Reimertz C et al (2007) Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 26:1681–1692.  https://doi.org/10.1038/sj.onc.1209974 CrossRefGoogle Scholar
  20. Dassano A, Mancuso M, Saran A et al (2014) N6-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response. Redox Biol 2:580–589.  https://doi.org/10.1016/j.redox.2014.03.001 CrossRefGoogle Scholar
  21. Divekar AY, Hakala MT (1971) Adenosine kinase of sarcoma 180 cells N6-substituted adenosines as substrates and inhibitors. Mol Pharmacol 7:663–673Google Scholar
  22. Doležal K, Popa I, Hauserová E et al (2007) Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorganic Med Chem 15:3737–3747.  https://doi.org/10.1016/j.bmc.2007.03.038 CrossRefGoogle Scholar
  23. Drenichev MS, Oslovsky VE, Mikhailov SN (2016) Cytokinin nucleosides—natural compounds with a unique spectrum of biological activities. Curr Top Med Chem 16(23):2562–2576CrossRefGoogle Scholar
  24. Dudzik P, Laidler P, Opałka M et al (2011) Effects of kinetin riboside on proliferation and proapoptotic activities in human normal and cancer cell lines. J Cell Biochem 112:2115–2124.  https://doi.org/10.1002/jcb.23132 CrossRefGoogle Scholar
  25. Fleysher MH, Hakala MT, Bloch A, Hall RH (1968) Synthesis and biological activity of some N6-alkyladenosines. J Med Chem 11:717–720.  https://doi.org/10.1021/jm00310a018 CrossRefGoogle Scholar
  26. Fleysher MH, Bloch A, Hakala MT, Nichol CA (1969) Synthesis and biological activity of some new N6-substituted purine nucleosides. J Med Chem 12:1056–1061.  https://doi.org/10.1021/jm00306a021 CrossRefGoogle Scholar
  27. Fredholm BB, Arslan G, Halldner L et al (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedeberg’s Arch Pharmacol. 362(4–5):364–374CrossRefGoogle Scholar
  28. Ge L, Yong JWH, Tan SN et al (2006) Analysis of cytokinin nucleotides in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry after solid-phase extraction. J Chromatogr A 1133:322–331.  https://doi.org/10.1016/j.chroma.2006.08.027 CrossRefGoogle Scholar
  29. Grace JT, Hakala MT, Hall RM, Blakeslee J (1967) N6-substituted adenine derivatives as growth inhibitors of human leukemic myeloblasts and S-180 cells. Proc. Am. Assoc. Cancer Res. 8:23–27Google Scholar
  30. Hacker B, Chang Y (1983) Enhancement of the antitumor activity of N6-(Δ2-isopentenyl)adenosine against cultured L-1210 leukemia cells by pentostatin using a polymeric delivery system. J Pharm Sci 72:902–905.  https://doi.org/10.1002/jps.2600720815 CrossRefGoogle Scholar
  31. Hall RH, Mintsioulis G (1973) Enzymatic activity that catalyzes degradation of N6-(δ2-isopentenyl)adenosine. J Biochem 73:739–748.  https://doi.org/10.1093/oxfordjournals.jbchem.a130136 CrossRefGoogle Scholar
  32. Helgeson JP (1968) The cytokinins. Synthetic and naturally occurring N6-substitutedadenine derivatives profoundly affect plant growth. Science 161(3845):974–981CrossRefGoogle Scholar
  33. Hertz NT, Berthet A, Sos ML et al (2013) A neo-substrate that amplifies catalytic activity of Parkinson’s-disease-related kinase PINK1. Cell 154:737–747.  https://doi.org/10.1016/j.cell.2013.07.030 CrossRefGoogle Scholar
  34. Ishii Y, Hori Y, Sakai S, Honma Y (2002) Control of differentiation and apoptosis of human myeloid leukemia cells by cytokinins and cytokinin nucleosides, plant redifferentiation-inducing hormones. Cell Growth Differ 13:19–26Google Scholar
  35. Ishii Y, Kasukabe T, Honma Y (2005a) Induction of CCAAT/enhancer binding protein-δ by cytokinins, but not by retinoic acid, during granulocytic differentiation of human myeloid leukaemia cells. Br J Haematol 128:540–547.  https://doi.org/10.1111/j.1365-2141.2004.05326.x CrossRefGoogle Scholar
  36. Ishii Y, Kasukabe T, Honma Y (2005b) Immediate up-regulation of the calcium-binding protein S100P and its involvement in the cytokinin-induced differentiation of human myeloid leukemia cells. Biochim Biophys Acta - Mol Cell Res 1745:156–165.  https://doi.org/10.1016/j.bbamcr.2005.01.005 CrossRefGoogle Scholar
  37. Jacobson KA, Müller CE (2016) Medicinal chemistry of adenosine, P2Y and P2Xreceptors. Neuropharmacology 104:31–49.  https://doi.org/10.1016/j.neuropharm.2015.12.001 CrossRefGoogle Scholar
  38. Jones R, Grace JT, Mittelman A, Woodruff MW (1968) Human pharmacology and initial clinical trail of isopentenyl adenosine (IPA). Proc. Am. Assoc. Cancer Res. 9:35Google Scholar
  39. Jorda R, Paruch K, Krystof V (2012) Cyclin-dependent kinase inhibitors inspired by roscovitine: purine bioisosteres. Curr Pharm Des 18 (20):2974–2980CrossRefGoogle Scholar
  40. Kadlecová A, Jirsa T, Novák O et al (2018) Natural plant hormones cytokinins increase stress resistance and longevity of Caenorhabditis elegans. Biogerontology 19:109–120.  https://doi.org/10.1007/s10522-017-9742-4 CrossRefGoogle Scholar
  41. Krige D, Needham LA, Bawden LJ et al (2008) CHR-2797: an antiproliferative aminopeptidase inhibitor that leads to amino acid deprivation in human leukemic cells. Cancer Res 68:6669–6679.  https://doi.org/10.1158/0008-5472.CAN-07-6627 CrossRefGoogle Scholar
  42. Laezza C, Portella G, Caruso MG et al (2006) N6-isopentenyladenosine arrests tumor cell proliferation by inhibiting farnesyl diphosphate synthase and protein prenylation. FASEB J 20:412–418.  https://doi.org/10.1096/fj.05-4044lsf CrossRefGoogle Scholar
  43. Laezza C, Malfitano AM, Di Matola T et al (2010) Involvement of Akt/NF-κB pathway in N6-isopentenyladenosine-induced apoptosis in human breast cancer cells. Mol Carcinog 49:892–901.  https://doi.org/10.1002/mc.20666 CrossRefGoogle Scholar
  44. Lewis BC, Shim H, Li Q et al (1997) Identification of putative c-Myc-responsive genes: characterization of rcl, a novel growth-related gene. Mol Cell Biol 17:4967–4978CrossRefGoogle Scholar
  45. Lewis BC, Prescott JE, Campbell SE et al (2000) Tumor induction by the c-Myc target genes rcl and lactate dehydrogenase A. Cancer Res 60:6178–6183Google Scholar
  46. Li M, Qi Y, Wei J et al (2017) N6-isopentenyladenosine promoted HeLa cell apoptosis through inhibitions of AKT and transforming growth factor β-activated kinase 1 activation. Tumor Biol  https://doi.org/10.1177/1010428317695966 Google Scholar
  47. Liberzon A, Birger C, Thorvaldsdóttir H et al (2015) The molecular signatures database hallmark gene set collection. Cell Syst 1:417–425.  https://doi.org/10.1016/j.cels.2015.12.004 CrossRefGoogle Scholar
  48. McDermott SP, Eppert K, Notta F et al (2012) A small molecule screening strategy with validation on human leukemia stem cells uncovers the therapeutic efficacy of kinetin riboside. Blood 119:1200–1207.  https://doi.org/10.1182/blood-2011-01-330019 CrossRefGoogle Scholar
  49. Merighi S, Battistello E, Giacomelli L et al (2019) Targeting A3 and A2A adenosine receptors in the fight against cancer. ExpertOpin Ther Targets. 12:1–10.  https://doi.org/10.1080/14728222.2019.1630380 Google Scholar
  50. Mitsiades CS, Ocio EM, Pandiella A et al (2008) Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res 68:5216–5225.  https://doi.org/10.1158/0008-5472.CAN-07-5725 CrossRefGoogle Scholar
  51. Mittelman A, Evans JT, Chheda GB (1975) Cytokinins as chemotherapeutic agents. Ann N Y Acad Sci 255:225–234CrossRefGoogle Scholar
  52. Mlejnek P (2013) Cytokinin-induced cell death is associated with elevated expression of alternative oxidase in tobacco BY-2 cells. Protoplasma 250:1195–1202.  https://doi.org/10.1007/s00709-013-0501-3 CrossRefGoogle Scholar
  53. Mlejnek P, Doležel P (2005) Apoptosis induced by N6-substituted derivatives of adenosine is related to intracellular accumulation of corresponding mononucleotides in HL-60 cells. Toxicol Vitr 19:985–990.  https://doi.org/10.1016/j.tiv.2005.06.023 CrossRefGoogle Scholar
  54. Mlejnek P, Kuglík P (2000) Induction of apoptosis in HL-60 cells by N6-benzyladenosine. J Cell Biochem 77:6–17.  https://doi.org/10.1002/(SICI)1097-4644(20000401)77:1%3c6:AID-JCB2%3e3.0.CO;2-3 CrossRefGoogle Scholar
  55. Mlejnek P, Procházka S (2002) Activation of caspase-like proteases and induction of apoptosis by isopentenyladenosine in tobacco BY-2 cells. Planta 215:158–166.  https://doi.org/10.1007/s00425-002-0733-5 CrossRefGoogle Scholar
  56. Mlejnek P, Doležel P, Procházka S (2003) Intracellular phosphorylation of benzyladenosine is related to apoptosis induction in tobacco BY-2 cells. Plant, Cell Environ 26:1723–1735.  https://doi.org/10.1046/j.1365-3040.2003.01090.x CrossRefGoogle Scholar
  57. Mlejnek P, Doležel P, Procházka S (2005) Intracellular conversion of cytokinin bases into corresponding mononucleotides is related to cell death induction in tobacco BY-2 cells. Plant Sci. 168(2):389–395CrossRefGoogle Scholar
  58. O’Brien S, Kantarjian H, Keating MJ (1996) Purine analogs in chronic lymphocytic leukemia and Waldenström’s macroglobulinemia. Ann Oncol 7(Suppl 6):S27–S33CrossRefGoogle Scholar
  59. Ottria R, Casati S, Baldoli E et al (2010) N6-alkyladenosines: synthesis and evaluation of in vitro anticancer activity. Bioorganic Med Chem 18:8396–8402.  https://doi.org/10.1016/j.bmc.2010.09.030 CrossRefGoogle Scholar
  60. Pisanti S, Picardi P, Ciaglia E et al (2014) Antiangiogenic effects of N6-isopentenyladenosine, an endogenous isoprenoid end product, mediated by AMPK activation. FASEB J 28:1132–1144.  https://doi.org/10.1096/fj.13-238238 CrossRefGoogle Scholar
  61. Plunkett W, Huang P, Gandhi V (1990) Metabolism and action of fludarabine phosphate. Semin Oncol 17(5 Suppl 8):3–17Google Scholar
  62. Ranieri R, Ciaglia E, Amodio G et al (2018) N6-isopentenyladenosine dual targeting of AMPK and Rab7 prenylation inhibits melanoma growth through the impairment of autophagic flux. Cell Death Differ 25:353–367.  https://doi.org/10.1038/cdd.2017.165 CrossRefGoogle Scholar
  63. Rhodes DR, Barrette TR, Rubin MA et al (2002) Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 62:4427–4433.  https://doi.org/10.1007/978-1-4020-9654-9 Google Scholar
  64. Romanov GA, Lomin SN, Schmülling T (2006) Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. JExp Bot 57(15):4051–4058.  https://doi.org/10.1093/jxb/erl179 Google Scholar
  65. Scrima M, Lauro G, Grimaldi M et al (2014) Structural evidence of N6-isopentenyladenosine as a new ligand of farnesyl pyrophosphate synthase. J Med Chem 57:7798–7803.  https://doi.org/10.1021/jm500869x CrossRefGoogle Scholar
  66. Seegobin M, Kisiala A, Noble A et al (2018) Canis familiaris tissues are characterized by different profiles of cytokinins typical of the tRNA degradation pathway. FASEB J 32:6575–6581.  https://doi.org/10.1096/fj.201800347 CrossRefGoogle Scholar
  67. Shin S, Bosc DG, Ingle JN et al (2008) Rcl is a novel ETV1/ER81 target gene upregulated in breast tumors. J Cell Biochem 105:866–874.  https://doi.org/10.1002/jcb.21884 CrossRefGoogle Scholar
  68. Skoog F (1973) Cytokinins in regulation of plant growth. Basic Life Sci 2:147–184Google Scholar
  69. Spíchal L, Rakova NY, Riefler M et al (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45(9):1299–1305CrossRefGoogle Scholar
  70. Spinola M, Galvan A, Pignatiello C et al (2005) Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene 24:5502–5509.  https://doi.org/10.1038/sj.onc.1208687 CrossRefGoogle Scholar
  71. Subramanian A, Paulovich A, Mesirov JP et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550.  https://doi.org/10.1073/pnas.0506580102 CrossRefGoogle Scholar
  72. Suk D, Simpson CL, Mihich E (1970) Toxicological and antiproliferative effects of N6-(delta2-isopentenyl) adenosine, a natural component of mammalian transfer RNA. Cancer Res 30:1429–1436Google Scholar
  73. Tiedemann RE, Chesi M, Sebag M et al (2008) Identification of kinetin riboside as a repressor of CCND1 and CCND2 with preclinical antimyeloma activity. J Clin Invest 118:1750–1764.  https://doi.org/10.1172/jci34149 Google Scholar
  74. Uhlen M, Oksvold P, Fagerberg L et al (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 28:1248–1250.  https://doi.org/10.1038/nbt1210-1248 CrossRefGoogle Scholar
  75. Vescovi M, Riefler M, Gessuti M et al (2012) Programmed cell death induced by high levels of cytokinin in Arabidopsis cultured cells is mediated by the cytokinin receptor CRE1/AHK4. J Exp Bot 63:2825–2832.  https://doi.org/10.1093/jxb/ers008 CrossRefGoogle Scholar
  76. Voller J, Zatloukal M, Lenobel R et al (2010) Anticancer activity of natural cytokinins: a structure-activity relationship study. Phytochemistry 71:1350–1359.  https://doi.org/10.1016/j.phytochem.2010.04.018 CrossRefGoogle Scholar
  77. Voller J, Béres T, Zatloukal M et al (2017a) The natural cytokinin 2OH3MeOBAR induces cell death by a mechanism that is different from that of the “classical” cytokinin ribosides. Phytochemistry 136:156–164.  https://doi.org/10.1016/j.phytochem.2017.01.004 CrossRefGoogle Scholar
  78. Voller J, Gonzalez G, Strnad M et al (2017b) Plant hormone cytokinins for modulating human aging and age-related diseases. In: Rattan S, Sharma R (eds) Hormones in ageing and longevity. Springer, Cham, pp 311–335CrossRefGoogle Scholar
  79. Wang L, Sun C, Wang ZH, Guo GQ (2012) Mechanism of apoptotosis induced by ortho-topolin riboside in human hepatoma cell line SMMC-7721. Food Chem Toxicol 50:1962–1968.  https://doi.org/10.1016/j.fct.2012.03.053 CrossRefGoogle Scholar
  80. Wang J, Yao X, Huang J (2017) New tricks for human farnesyltransferase inhibitor: cancer and beyond. Medchemcomm 8:841–854.  https://doi.org/10.1039/c7md00030h CrossRefGoogle Scholar
  81. Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538.  https://doi.org/10.1016/j.pbi.2009.07.002 CrossRefGoogle Scholar
  82. Zottini M, Barizza E, Bastianelli F, Carimi F, Lo Schiavo F (2006) Growth and senescence of Medicago truncatula cultured cells are associated with characteristic mitochondrial morphology. New Phytol 172 (2):239–247CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Growth Regulators, The Czech Academy of SciencesInstitute of Experimental Botany & Palacký UniversityOlomoucCzech Republic
  2. 2.Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and DentistryPalacký UniversityOlomoucCzech Republic
  3. 3.Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural ResearchPalacký UniversityOlomoucCzech Republic
  4. 4.Institute of Molecular and Translational Medicine, Faculty of Medicine and DentistryPalacký UniversityOlomoucCzech Republic
  5. 5.Institute of Biology/Applied Genetics, Dahlem Centre of Plant SciencesFreie Universität BerlinBerlinGermany

Personalised recommendations