Natural and hemi-synthetic pentacyclic triterpenes as antimicrobials and resistance modifying agents against Staphylococcus aureus: a review

  • Lucy Catteau
  • Li Zhu
  • Françoise Van Bambeke
  • Joëlle Quetin-Leclercq
Article
  • 25 Downloads

Abstract

Staphylococcus aureus infections are considered as seriously problematic for human health and necessitate the development of new medicines and innovative antimicrobial strategies. Plant secondary metabolites have already demonstrated their potential as antibacterials when used alone but also in combination with other antimicrobial agents to potentiate their activity. Triterpenoids are widely distributed in the plant kingdom and known to have many beneficial effects, including anti-inflammatory, immunomodulatory, anti-proliferative, antimycotic, or antimicrobial activity. The aim of this paper is to review the activity of pentacyclic triterpenoids belonging to the ursane, oleanane, or lupane groups against Staphylococcus aureus. We summarize their activity as anti-staphylococcal compounds but also as resistance modifying agents when combined with common antibiotics.

Keywords

Ursane Oleanane Lupane MIC FICI Staphylococcus aureus 

Abbreviations

ATCC

American type culture collection

BA

betulinic acid

CA

ceanothic acid

FICI

fractional inhibitory concentration index

MA

maslinic acid

MIC

minimum inhibitory concentration

MSSA

methicillin-sensitive Staphylococcus aureus

MRSA

methicillin-resistant Staphylococcus aureus

MTCC

microbial type culture collection

NBRC

NITE (National Institute of Technology and Evaluation) Biological Resource Center

OA

oleanolic acid

PBP

penicillin binding protein

SAR

structure activity-relationship

UA

ursolic acid

Supplementary material

11101_2018_9564_MOESM1_ESM.docx (361 kb)
Supplementary material 1 (DOCX 360 kb)

References

  1. Abreu AC, McBain AJ, Simões M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29:1007–1021.  https://doi.org/10.1039/C2NP20035J PubMedCrossRefGoogle Scholar
  2. Abreu AC, Paulet D, Coqueiro A, Malheiro J, Borges A, Saavedra MJ, Choi YH, Simões M (2016) Antibiotic adjuvants from Buxus sempervirens to promote effective treatment of drug-resistant Staphylococcus aureus biofilms. RSC Adv 6:95000–95009.  https://doi.org/10.1039/C6RA21137B CrossRefGoogle Scholar
  3. Aeschlimann JR, Dresser LD, Kaatz GW, Rybak MJ (1999) Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrob Agents Chemother 43:335–340PubMedPubMedCentralGoogle Scholar
  4. Alakurtti S, Mäkelä T, Koskimies S, Yli-Kauhaluoma J (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 29:1–13.  https://doi.org/10.1016/j.ejps.2006.04.006 PubMedCrossRefGoogle Scholar
  5. Ali MS, Jahangir M, ul Hussan SS, Choudhary MI (2002) Inhibition of α-glucosidase by oleanolic acid and its synthetic derivatives. Phytochemistry 60:295–299.  https://doi.org/10.1016/S0031-9422(02)00104-8 PubMedCrossRefGoogle Scholar
  6. Ali R, Chauhan V, Farooq S, Khan A, Farooq U (2014) In vitro analysis of antibacterial activity of Ocimum sanctum against pathogenic bacteria and quantification of ursolic acid and oleanolic acid. Int J Pharm Sci Rev Res 25:13–17Google Scholar
  7. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79.  https://doi.org/10.1016/j.jpha.2015.11.005 PubMedCrossRefGoogle Scholar
  8. Barbour EK, Al Sharif M, Sagherian VK, Habre AN, Talhouk RS, Talhouk SN (2004) Screening of selected indigenous plants of Lebanon for antimicrobial activity. J Ethnopharmacol 93:1–7.  https://doi.org/10.1016/j.jep.2004.02.027 PubMedCrossRefGoogle Scholar
  9. Basri DF, Xian LW, Shukor A, Indah N, Latip J (2014) Bacteriostatic antimicrobial combination: Antagonistic interaction between epsilon-viniferin and vancomycin against methicillin-resistant Staphylococcus aureus. BioMed Res Int.  https://doi.org/10.1155/2014/461756 Google Scholar
  10. Berenbaum MC (1980) Correlations between methods for measurement of synergy. J Infect Dis 142:476–478.  https://doi.org/10.1093/infdis/142.3.476 PubMedCrossRefGoogle Scholar
  11. Bildziukevich U, Vida N, Rárová L, Kolář M, Šaman D, Havlíček L, Drašar P, Wimmer Z (2015) Polyamine derivatives of betulinic acid and β-sitosterol: a comparative investigation. Steroids 100:27–35.  https://doi.org/10.1016/j.steroids.2015.04.005 PubMedCrossRefGoogle Scholar
  12. Bonapace CR, Bosso JA, Friedrich LV, White RL (2002) Comparison of methods of interpretation of checkerboard synergy testing. Diagn Microbiol Infect Dis 44:363–366.  https://doi.org/10.1016/S0732-8893(02)00473-X PubMedCrossRefGoogle Scholar
  13. Borah B, Phukon P, Hazarika MP, Ahmed R, Sarmah DK, Wann SB, Das A, Bhau BS (2016) Calamus leptospadix Griff. a high saponin yielding plant with antimicrobial property. Ind Crops Prod 82:127–132.  https://doi.org/10.1016/j.indcrop.2015.11.075 CrossRefGoogle Scholar
  14. Brahmachari G, Mandal NC, Roy R, Ghosh R, Barman S, Sarkar S, Jash SK, Mondal S (2013) A new pentacyclic triterpene with potent antibacterial activity from Limnophila indica Linn. (Druce). Fitoterapia 90:104–111.  https://doi.org/10.1016/j.fitote.2013.07.012 PubMedCrossRefGoogle Scholar
  15. Catteau L, Reichmann NT, Olson J, Pinho MG, Nizet V, Van Bambeke F, Quetin-Leclercq J (2017) Synergy between ursolic and oleanolic acids from Vitellaria paradoxa leaf extract and β-lactams against methicillin-resistant Staphylococcus aureus: in vitro and in vivo activity and underlying mechanisms. Molecules 22:2245.  https://doi.org/10.3390/molecules22122245 CrossRefGoogle Scholar
  16. Cesari I, Hoerlé M, Simoes-Pires C, Grisoli P, Queiroz EF, Dacarro C, Marcourt L, Moundipa PF, Carrupt PA, Cuendet M, Caccialanza G, Wolfender JL, Brusotti G (2013) Anti-inflammatory, antimicrobial and antioxidant activities of Diospyros bipindensis (Gürke) extracts and its main constituents. J Ethnopharmacol 146:264–270.  https://doi.org/10.1016/j.jep.2012.12.041 PubMedCrossRefGoogle Scholar
  17. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641.  https://doi.org/10.1038/nrmicro2200 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chouaïb K, Hichri F, Nguir A, Daami-Remadi M, Elie N, Touboul D, Ben Jannet H, Hamza MA (2015) Semi-synthesis of new antimicrobial esters from the natural oleanolic and maslinic acids. Food Chem 183:8–17.  https://doi.org/10.1016/j.foodchem.2015.03.018 PubMedCrossRefGoogle Scholar
  19. Chung PY, Navaratnam P, Chung LY (2011) Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Ann Clin Microbiol Antimicrob 10:25.  https://doi.org/10.1186/1476-0711-10-25 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chung PY, Chung LY, Navaratnam P (2013a) Transcriptional profiles of the response of methicillin-resistant Staphylococcus aureus to pentacyclic triterpenoids. PLoS ONE.  https://doi.org/10.1371/journal.pone.0056687 Google Scholar
  21. Chung PY, Chung LY, Navaratnam P (2013b) Identification, by gene expression profiling analysis, of novel gene targets in Staphylococcus aureus treated with betulinaldehyde. Res Microbiol 164:319–326.  https://doi.org/10.1016/j.resmic.2013.01.005 PubMedCrossRefGoogle Scholar
  22. Chung PY, Chung LY, Navaratnam P (2014) Potential targets by pentacyclic triterpenoids from Callicarpa farinosa against methicillin-resistant and sensitive Staphylococcus aureus. Fitoterapia 94:48–54.  https://doi.org/10.1016/j.fitote.2014.01.026 PubMedCrossRefGoogle Scholar
  23. CLSI Clinical and Laboratory Standards Institute (2017) Performance standards for antimicrobial susceptibility testing. 24th Informational supplement (MS100-S27). Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  24. da Silva Filho AA, de Sousa JPB, Soares S, Furtado NAJC, Andrade e Silva ML, Cunha WR, Gregório LE, Nanayakkara NPD, Bastos JK (2008) Antimicrobial activity of the extract and isolated compounds from Baccharis dracunculifolia D. C. (Asteraceae). Z Naturforsch, C: J Biosci 63:40–46Google Scholar
  25. Dalmarco JB, Dalmarco EM, Koelzer J, Pizzolatti MG, Fröde TS (2010) Isolation and identification of bioactive compounds responsible for the anti-bacterial efficacy of Lotus corniculatus var. São Gabriel. Int J Green Pharm (IJGP) 4.  https://doi.org/10.22377/ijgp.v4i2.130 Google Scholar
  26. de Breij A, Karnaoukh TG, Schrumpf J, Hiemstra PS, Nibbering PH, van Dissel JT, de Visser PC (2016) The licorice pentacyclic triterpenoid component 18β-glycyrrhetinic acid enhances the activity of antibiotics against strains of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 35:555–562.  https://doi.org/10.1007/s10096-015-2570-z PubMedCrossRefGoogle Scholar
  27. de León L, López MR, Moujir L (2010) Antibacterial properties of zeylasterone, a triterpenoid isolated from Maytenus blepharodes, against Staphylococcus aureus. Microbiol Res 165:617–626.  https://doi.org/10.1016/j.micres.2009.12.004 PubMedCrossRefGoogle Scholar
  28. Dewick PM (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  29. do Nascimento PGG, Lemos TLG, Bizerra AMC, Arriaga ÂMC, Ferreira DA, Santiago GMP, Braz-Filho R, Costa JGM (2014) Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 19:1317–1327.  https://doi.org/10.3390/molecules19011317 PubMedCrossRefGoogle Scholar
  30. Dwivedi GR, Maurya A, Yadav DK, Khan F, Darokar MP, Srivastava SK (2015) Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant Escherichia coli. Chem Biol Drug Des 86:272–283.  https://doi.org/10.1111/cbdd.12491 PubMedCrossRefGoogle Scholar
  31. Dzoyem JP, Melong R, Tsamo AT, Tchinda AT, Kapche DGWF, Ngadjui BT, McGaw LJ, Eloff JN (2017) Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae). BMC Res Notes 10:118.  https://doi.org/10.1186/s13104-017-2441-z PubMedPubMedCentralCrossRefGoogle Scholar
  32. El Sayed AM, Ezzat SM, Sabry OM (2016) A new antibacterial lupane ester from the seeds ofAcokanthera oppositifolia Lam. Nat Prod Res.  https://doi.org/10.1080/14786419.2016.1166494 PubMedGoogle Scholar
  33. Eliopoulos GM (1996) Antimicrobial combinations. In: Lorian V (ed) Antibiotics in laboratory medicine. Lippincott Williams & Wilkins, Philadelphia, pp 330–396Google Scholar
  34. Essawi T, Srour M (2000) Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharmacol 70:343–349.  https://doi.org/10.1016/S0378-8741(99)00187-7 PubMedCrossRefGoogle Scholar
  35. EUCAST (2000) EUCAST. Clin Microbiol Infect 6:503–508.  https://doi.org/10.1046/j.1469-0691.2000.00149.x CrossRefGoogle Scholar
  36. EUCAST (The European Committee on Antimicrobial Susceptibility Testing) (2017) Breakpoint tables for interpretation of MICs and zone diameters. Version 7.0. http://www.eucast.org
  37. Fadipe VO, Mongalo NI, Opoku AR (2015) In vitro evaluation of the comprehensive antimicrobial and antioxidant properties of Curtisia dentata (Burm.f) CA Sm: toxicological effect on the human embryonic kidney (HEK293) and human hepatocellular carcinoma (HepG2) cell lines. EXCLI J 14:971–983.  https://doi.org/10.17179/excli2015-351 PubMedPubMedCentralGoogle Scholar
  38. Ferreira DS, Tozatti M, Souza MGM, Martins CH, Januario AH, Pauletti PM, Silva M, Cunha W (2016) Antimicrobial activity of compounds isolated from Rosmarinus officinalis and semi-synthetic derivatives against multidrug-resistant bacteria. Lat Am J Pharm 35:862–868Google Scholar
  39. Filocamo A, Bisignano C, D’Arrigo M, Ginestra G, Mandalari G, Galati EM (2011) Norfloxacin and ursolic acid: in vitro association and postantibiotic effect against Staphylococcus aureus. Lett Appl Microbiol 53:193–197.  https://doi.org/10.1111/j.1472-765X.2011.03090.x PubMedCrossRefGoogle Scholar
  40. Fontanay S, Grare M, Mayer J, Finance C, Duval RE (2008) Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes. J Ethnopharmacol 120:272–276.  https://doi.org/10.1016/j.jep.2008.09.001 PubMedCrossRefGoogle Scholar
  41. Furtado NA, Pirson L, Edelberg H, Miranda ML, Loira-Pastoriza C, Preat V, Larondelle Y, André CM (2017) Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules.  https://doi.org/10.3390/molecules22030400 Google Scholar
  42. González-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10:3400–3419.  https://doi.org/10.3390/ijms10083400 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gossan DPA, Alabdul Magid A, Yao-Kouassi PA, Josse J, Gangloff SC, Morjani H, Voutquenne-Nazabadioko L (2016) Antibacterial and cytotoxic triterpenoids from the roots of Combretum racemosum. Fitoterapia 110:89–95.  https://doi.org/10.1016/j.fitote.2016.03.002 PubMedCrossRefGoogle Scholar
  44. Gu W, Hao Y, Zhang G, Wang S-F, Miao T-T, Zhang K-P (2015) Synthesis, in vitro antimicrobial and cytotoxic activities of new carbazole derivatives of ursolic acid. Bioorg Med Chem Lett 25:554–557.  https://doi.org/10.1016/j.bmcl.2014.12.021 PubMedCrossRefGoogle Scholar
  45. Hadler JL, Petit S, Mandour M, Cartter M (2012) Trends in invasive infection with methicillin-resistant Staphylococcus aureus, connecticut, USA, 2001–2010. Emerg Infect Dis J 18:917–924CrossRefGoogle Scholar
  46. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990.  https://doi.org/10.1046/j.1365-2672.1999.00780.x PubMedCrossRefGoogle Scholar
  47. Hamza M, Nadir M, Mehmood N, Farooq A (2016) In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains. Indian J Pharmacol 48:710–714.  https://doi.org/10.4103/0253-7613.194851 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hess SC, Brum RL, Honda NK, Cruz AB, Moretto E, Cruz RB, Messana I, Ferrari F, Cechinel Filho V, Yunes RA (1995) Antibacterial activity and phytochemical analysis of Vochysia divergens (Vochysiaceae). J Ethnopharmacol 47:97–100PubMedCrossRefGoogle Scholar
  49. Horiuchi K, Shiota S, Hatano T, Yoshida T, Kuroda T, Tsuchiya T (2007) Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol Pharm Bull 30:1147–1149PubMedCrossRefGoogle Scholar
  50. Huang H, Flynn NM, King JH, Monchaud C, Morita M, Cohen SH (2006) Comparisons of community-associated methicillin-resistant Staphylococcus aureus (MRSA) and hospital-associated MSRA infections in sacramento, California. J Clin Microbiol 44:2423–2427.  https://doi.org/10.1128/JCM.00254-06 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Huang L, Luo H, Li Q, Wang D, Zhang J, Hao X, Yang X (2015) Pentacyclic triterpene derivatives possessing polyhydroxyl ring A inhibit gram-positive bacteria growth by regulating metabolism and virulence genes expression. Eur J Med Chem 95:64–75.  https://doi.org/10.1016/j.ejmech.2015.01.015 PubMedCrossRefGoogle Scholar
  52. Hussain Shaik A, Rasool SN, Abdul Kareem M, Krushna GS, Akhtar PM, Devi KL (2012) Maslinic acid protects against isoproterenol-induced cardiotoxicity in albino Wistar rats. J Med Food 15:741–746.  https://doi.org/10.1089/jmf.2012.2191 PubMedCrossRefGoogle Scholar
  53. Johnson AP (2011) Methicillin-resistant Staphylococcus aureus: the European landscape. J Antimicrob Chemother 66:iv43–iv48.  https://doi.org/10.1093/jac/dkr076 PubMedCrossRefGoogle Scholar
  54. Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49:1749–1755.  https://doi.org/10.1086/647952 PubMedCrossRefGoogle Scholar
  55. Joung D-K, Joung H, Yang D-W, Kwon D-Y, Choi J-G, Woo S, Shin D-Y, Kweon O-H, Kweon K-T, Shin D-W (2012) Synergistic effect of rhein in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. Exp Ther Med 3:608–612.  https://doi.org/10.3892/etm.2012.459 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kamatou GPP, Van Vuuren SF, Van Heerden FR, Seaman T, Viljoen AM (2007) Antibacterial and antimycobacterial activities of South African Salvia species and isolated compounds from S. chamelaeagnea. S Afr J Bot 73:552–557.  https://doi.org/10.1016/j.sajb.2007.05.001 CrossRefGoogle Scholar
  57. Kang W-Y, Du Z-Z, Yang X-S, Hao X-J (2005) A new triterpene from Luculia pinciana hook. J Asian Nat Prod Res 7:91–94.  https://doi.org/10.1080/10286020310001608967 PubMedCrossRefGoogle Scholar
  58. Katerere DR, Gray AI, Nash RJ, Waigh RD (2003) Antimicrobial activity of pentacyclic triterpenes isolated from African combretaceae. Phytochemistry 63:81–88PubMedCrossRefGoogle Scholar
  59. Khera S, Woldemichael GM, Singh MP, Suarez E, Timmermann BN (2003) A novel antibacterial iridoid and triterpene from Caiophora coronata. J Nat Prod 66:1628–1631.  https://doi.org/10.1021/np030314a PubMedCrossRefGoogle Scholar
  60. Kim SG, Kim MJ, Jin D, Park SN, Cho EG, Freire MO, Jang SJ, Park YJ, Kook JK (2012) Antimicrobial effect of ursolic acid and oleanolic acid against methicillin-resistant Staphylococcus aureus. Korean J Microbiol 48:212–215CrossRefGoogle Scholar
  61. Kim S, Lee H, Lee S, Yoon Y, Choi K-H (2015) Antimicrobial action of oleanolic acid on Listeria monocytogenes, Enterococcus faecium, and Enterococcus faecalis. PLoS ONE 10:e0118800.  https://doi.org/10.1371/journal.pone.0118800 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kiplimo JJ, Koorbanally NA, Chenia H (2011) Triterpenoids from Vernonia auriculifera Hiern exhibit antimicrobial activity. Afr J Pharm Pharmacol 5:1150–1156Google Scholar
  63. Kuete V (2010) Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med 76:1479–1491.  https://doi.org/10.1055/s-0030-1250027 PubMedCrossRefGoogle Scholar
  64. Kuete V, Eyong KO, Folefoc GN, Beng VP, Hussain H, Krohn K, Nkengfack AE (2007a) Antimicrobial activity of the methanolic extract and of the chemical constituents isolated from Newbouldia laevis. Pharmazie 62:552–556PubMedGoogle Scholar
  65. Kuete Victor, Wabo GF, Ngameni B, Mbaveng AT, Metuno R, Etoa F-X, Ngadjui BT, Beng VP, Meyer JJM, Lall N (2007b) Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae). J Ethnopharmacol 114:54–60.  https://doi.org/10.1016/j.jep.2007.07.025 PubMedCrossRefGoogle Scholar
  66. Kurek A, Grudniak AM, Szwed M, Klicka A, Samluk L, Wolska KI, Janiszowska W, Popowska M (2010) Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie Van Leeuwenhoek 97:61–68.  https://doi.org/10.1007/s10482-009-9388-6 PubMedCrossRefGoogle Scholar
  67. Kurek A, Nadkowska P, Pliszka S, Wolska KI (2012) Modulation of antibiotic resistance in bacterial pathogens by oleanolic acid and ursolic acid. Phytomedicine 19:515–519.  https://doi.org/10.1016/j.phymed.2011.12.009 PubMedCrossRefGoogle Scholar
  68. Kuroda M, Nagasaki S, Ohta T (2007) Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to beta-lactams in methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 59:425–432.  https://doi.org/10.1093/jac/dkl519 PubMedCrossRefGoogle Scholar
  69. Laszczyk MN (2009) Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med 75:1549–1560.  https://doi.org/10.1055/s-0029-1186102 PubMedCrossRefGoogle Scholar
  70. Leal ICR, dos Santos KRN, Júnior II, Antunes OAC, Porzel A, Wessjohann L, Kuster RM (2010) Ceanothane and lupane type triterpenes from Zizyphus joazeiro: an anti-staphylococcal evaluation. Planta Med 76:47–52.  https://doi.org/10.1055/s-0029-1185947 PubMedCrossRefGoogle Scholar
  71. Martínez MJ, Betancourt J, Alonso-González N, Jauregui A (1996) Screening of some Cuban medicinal plants for antimicrobial activity. J Ethnopharmacol 52:171–174.  https://doi.org/10.1016/0378-8741(96)01405-5 PubMedCrossRefGoogle Scholar
  72. Mathabe MC, Hussein AA, Nikolova RV, Basson AE, Meyer JJM, Lall N (2008) Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. J Ethnopharmacol 116:194–197.  https://doi.org/10.1016/j.jep.2007.11.017 PubMedCrossRefGoogle Scholar
  73. Miller LA, Ratnam K, Payne DJ (2001) Beta-lactamase-inhibitor combinations in the 21st century: current agents and new developments. Curr Opin Pharmacol 1:451–458PubMedCrossRefGoogle Scholar
  74. Miller RR, Price JR, Batty EM, Didelot X, Wyllie D, Golubchik T, Crook DW, Paul J, Peto TEA, Wilson DJ, Cule M, Ip CLC, Day NPJ, Moore CE, Bowden R, Llewelyn MJ (2014) Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone. J Hosp Infect 86:83–89.  https://doi.org/10.1016/j.jhin.2013.11.007 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Moody JA, Gerding DN, Peterson LR (1987) Evaluation of ciprofloxacin’s synergism with other agents by multiple in vitro methods. Am J Med 82:44–54PubMedCrossRefGoogle Scholar
  76. Muhammad I, El Sayed KA, Mossa JS, Al-Said MS, El-Feraly FS, Clark AM, Hufford CD, Oh S, Mayer AMS (2000) Bioactive 12-oleanene triterpene and secotriterpene acids from Maytenus undata. J Nat Prod 63:605–610.  https://doi.org/10.1021/np990456y PubMedCrossRefGoogle Scholar
  77. Muhammad D, Lalun N, Bobichon H, Le Magrex Debar E, Gangloff SC, Nour M, Voutquenne-Nazabadioko L (2016) Triterpenoids from the leaves of Alphitonia xerocarpus Baill and their biological activity. Phytochemistry 129:45–57.  https://doi.org/10.1016/j.phytochem.2016.07.005 PubMedCrossRefGoogle Scholar
  78. Muhammad D, Lalun N, Bobichon H, Le Magrex Debar E, Gangloff SC, Nour M, Voutquenne-Nazabadioko L (2017) Triterpenoid saponins and other glycosides from the stems and bark of Jaffrea xerocarpa and their biological activity. Phytochemistry 141:121–130.  https://doi.org/10.1016/j.phytochem.2017.05.018 PubMedCrossRefGoogle Scholar
  79. Mulholland DA, Mohammed AMA, Coombes PH, Haque S, Pohjala LL, Tammela PSM, Crouch NR (2011) Triterpenoid acids and lactones from the leaves of Fadogia tetraquetra var. tetraquetra (Rubiaceae). Nat Prod Commun 6:1573–1576PubMedGoogle Scholar
  80. Na H, Li X, Zou C, Wang Chenhong, Wang Chao, Liu K (2016) Triterpene sapogenin-polyarginine conjugates exhibit promising antibacterial activity against gram-positive strains. Bioorg Med Chem 24:2999–3005.  https://doi.org/10.1016/j.bmc.2016.05.008 PubMedCrossRefGoogle Scholar
  81. Ndjateu FST, Tsafack RBN, Nganou BK, Awouafack MD, Wabo HK, Tene M, Tane P, Eloff JN (2014) Antimicrobial and antioxidant activities of extracts and ten compounds from three Cameroonian medicinal plants: Dissotis perkinsiae (Melastomaceae), Adenocarpus mannii (Fabaceae) and Barteria fistulosa (Passifloraceae). S Afr J Bot 91:37–42.  https://doi.org/10.1016/j.sajb.2013.11.009 CrossRefGoogle Scholar
  82. Ngezahayo J, Pottier L, Ribeiro SO, Delporte C, Fontaine V, Hari L, Stévigny C, Duez P (2016) Plastotoma rotundifolium aerial tissue extract has antibacterial activities. Ind Crops Prod 86:301–310.  https://doi.org/10.1016/j.indcrop.2016.04.004 CrossRefGoogle Scholar
  83. Nguyen HT, Ho DV, Vo HQ, Hoang THX, Kodama T, Ito T, Morita H, Raal A (2016) The components from aerial parts of Sarcosperma affinis Gagnep. and their antibacterial activities. Cogent Chem 2:1254421.  https://doi.org/10.1080/23312009.2016.1254421 Google Scholar
  84. Nguyen HT, Ho DV, Vo HQ, Le AT, Nguyen HM, Kodama T, Ito T, Morita H, Raal A (2017) Antibacterial activities of chemical constituents from the aerial parts of Hedyotis pilulifera. Pharm Biol 55:787–791.  https://doi.org/10.1080/13880209.2017.1279673 PubMedCrossRefGoogle Scholar
  85. Norden CW, Wentzel H, Keleti E (1979) Comparison of techniques for measurement of in vitro antibiotic synergism. J Infect Dis 140:629–633.  https://doi.org/10.1093/infdis/140.4.629 PubMedCrossRefGoogle Scholar
  86. Oyama K, Kawada-Matsuo M, Oogai Y, Hayashi T, Nakamura N, Komatsuzawa H (2016) Antibacterial effects of glycyrrhetinic acid and its derivatives on Staphylococcus aureus. PLoS ONE 11:e0165831.  https://doi.org/10.1371/journal.pone.0165831 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Prasad S, Kalra N, Shukla Y (2007) Hepatoprotective effects of lupeol and mango pulp extract of carcinogen induced alteration in Swiss albino mice. Mol Nutr Food Res 51:352–359.  https://doi.org/10.1002/mnfr.200600113 PubMedCrossRefGoogle Scholar
  88. Raja AF, Ali F, Khan IA, Shawl AS, Arora DS, Shah BA, Taneja SC (2011) Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata. BMC Microbiol 11:54.  https://doi.org/10.1186/1471-2180-11-54 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ramadwa TE, Elgorashi EE, McGaw LJ, Ahmed AS, Eloff JN (2017) Antimicrobial, anti-inflammatory activity and cytotoxicity of Funtumia africana leaf extracts, fractions and the isolated methyl ursolate. S Afr J Bot 108:126–131.  https://doi.org/10.1016/j.sajb.2016.10.019 CrossRefGoogle Scholar
  90. Ríos JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84.  https://doi.org/10.1016/j.jep.2005.04.025 PubMedCrossRefGoogle Scholar
  91. Rizvi W, Rizvi M, Kumar R, Kumar A, Shukla I, Parveen M (2009) Antibacterial activity of Ficus lyrata: an in vitro study. Internet J Pharmacol 8:7Google Scholar
  92. Rodvold KA, McConeghy KW (2014) Methicillin-resistant Staphylococcus aureustherapy: past, present, and future. Clin Infect Dis 58:S20–S27.  https://doi.org/10.1093/cid/cit614 PubMedCrossRefGoogle Scholar
  93. Rungsimakan S, Rowan MG (2014) Terpenoids, flavonoids and caffeic acid derivatives from Salvia viridis L. cvar. Blue Jeans. Phytochemistry 108:177–188.  https://doi.org/10.1016/j.phytochem.2014.08.029 PubMedCrossRefGoogle Scholar
  94. Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, Jabbar A (2010) Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 27:238–254.  https://doi.org/10.1039/b916096e PubMedCrossRefGoogle Scholar
  95. Sandora TJ, Goldmann DA (2012) Preventing lethal hospital outbreaks of antibiotic-resistant bacteria. New Engl J Med 367:2168–2170.  https://doi.org/10.1056/NEJMp1212370 PubMedCrossRefGoogle Scholar
  96. Sarıkahya NB, Pekmez M, Arda N, Kayce P, Yavaşoğlu NÜK, Kırmızıgül S (2011) Isolation and characterization of biologically active glycosides from endemic Cephalaria species in Anatolia. Phytochem Lett 4:415–420.  https://doi.org/10.1016/j.phytol.2011.05.006 CrossRefGoogle Scholar
  97. Shai LJ, McGaw LJ, Aderogba MA, Mdee LK, Eloff JN (2008) Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f) C.A. Sm. leaves. J Ethnopharmacol 119:238–244.  https://doi.org/10.1016/j.jep.2008.06.036 PubMedCrossRefGoogle Scholar
  98. Shimizu M, Shiota S, Mizushima T, Ito H, Hatano T, Yoshida T, Tsuchiya T (2001) Marked potentiation of activity of β-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob Agents Chemother 45:3198–3201.  https://doi.org/10.1128/AAC.45.11.3198-3201.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shiota S, Shimizu M, Mizusima T, Ito H, Hatano T, Yoshida T, Tsuchiya T (2000) Restoration of effectiveness of β-lactams on methicillin-resistant Staphylococcus aureus by tellimagrandin I from rose red. FEMS Microbiol Lett 185:135–138.  https://doi.org/10.1111/j.1574-6968.2000.tb09051.x PubMedGoogle Scholar
  100. Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T (2004) Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 48:67–73PubMedCrossRefGoogle Scholar
  101. Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  102. Srivastava G, Jain R, Vyas N, Mehta A, Kothari SK (2013) Antimicrobial activity of the methanolic extract, fractions and isolated compounds from Citrullus Colocynthis (l.) Schrad. Int J Pharm Bio Sci 4:825–833Google Scholar
  103. Tankeu BLN, Tapondjou A, Barboni L, Tamokou JDD, Kuiate J-R, Tane P, HJ P (2009) NMR assignment and antimicrobial/antioxidant activities of 1β-hydroxyeuscaphic acid from the seeds of Butyrospermum parkii. Nat Prod Sci 15:76–82Google Scholar
  104. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119:S3–S10.  https://doi.org/10.1016/j.amjmed.2006.03.011 PubMedCrossRefGoogle Scholar
  105. Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257.  https://doi.org/10.1146/annurev-arplant-050312-120229 PubMedCrossRefGoogle Scholar
  106. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661.  https://doi.org/10.1128/CMR.00134-14 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wang J, Ren H, Xu Q-L, Zhou Z-Y, Wu P, Wei X-Y, Cao Y, Chen X-X, Tan J-W (2015) Antibacterial oleanane-type triterpenoids from pericarps of Akebia trifoliata. Food Chem 168:623–629.  https://doi.org/10.1016/j.foodchem.2014.07.105 PubMedCrossRefGoogle Scholar
  108. Wang C-M, Chen H-T, Wu Z-Y, Jhan Y-L, Shyu C-L, Chou C-H (2016a) Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules 21:139.  https://doi.org/10.3390/molecules21020139 PubMedCrossRefGoogle Scholar
  109. Wang C-M, Jhan Y-L, Tsai S-J, Chou C-H (2016b) The pleiotropic antibacterial mechanisms of ursolic acid against methicillin-resistant Staphylococcus aureus (MRSA). Molecules 21:884.  https://doi.org/10.3390/molecules21070884 CrossRefGoogle Scholar
  110. White RL, Burgess DS, Manduru M, Bosso JA (1996) Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 40:1914–1918PubMedPubMedCentralGoogle Scholar
  111. WHO (World Health Organization) (2017) Antimicrobial resistance Factsheets. http://www.who.int/mediacentre/factsheets/fs194/en/
  112. Wolska KI, Grzes K, Kurek A (2012) Synergy between novel antimicrobials and conventional antibiotics or bacteriocins. Pol J Microbiol 61:95–104PubMedGoogle Scholar
  113. Woo S-G, Lee S-Y, Lee S-M, Lim K-H, Ha E-J, Eom Y-B (2017) Activity of novel inhibitors of Staphylococcus aureus biofilms. Folia Microbiol (Praha) 62:157–167.  https://doi.org/10.1007/s12223-016-0485-4 CrossRefGoogle Scholar
  114. Yeh PJ, Hegreness MJ, Aiden AP, Kishony R (2009) Drug interactions and the evolution of antibiotic resistance. Nat Rev Microbiol 7:460–466.  https://doi.org/10.1038/nrmicro2133 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhang Y, Bao F, Hu J, Liang S, Zhang Y, Du G, Zhang C, Cheng Y (2007) Antibacterial lignans and triterpenoids from Rostellularia procumbens. Planta Med 73:1596–1599.  https://doi.org/10.1055/s-2007-993747 PubMedCrossRefGoogle Scholar
  116. Zheng C-J, Sohn M-J, Kim K-Y, Yu H-E, Kim W-G (2008) Olean-27-carboxylic acid-type triterpenes with potent antibacterial activity from Aceriphyllum rossii. J Agric Food Chem 56:11752–11756.  https://doi.org/10.1021/jf802832w PubMedCrossRefGoogle Scholar
  117. Zhou Z, Ma C, Zhang H, Bi Y, Chen X, Tian H, Xie X, Meng Q, Lewis PJ, Xu J (2013) Synthesis and biological evaluation of novel ocotillol-type triterpenoid derivatives as antibacterial agents. Eur J Med Chem 68:444–453.  https://doi.org/10.1016/j.ejmech.2013.07.041 PubMedCrossRefGoogle Scholar
  118. Zuo GY, Wang GC, Zhao YB, Xu GL, Hao XY, Han J, Zhao Q (2008) Screening of Chinese medicinal plants for inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J Ethnopharmacol 120:287–290.  https://doi.org/10.1016/j.jep.2008.08.021 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pharmacognosy Research Group, Louvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
  2. 2.Pharmacologie cellulaire et moléculaire, Louvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium

Personalised recommendations