Variation of photosynthetic characteristics and yield in wild and cultivated species of yams (Dioscorea spp.) from Koraput, India

Article
  • 4 Downloads

Abstract

Variations in leaf gas-exchange characteristics, PSII activity, leaf pigments, and tuber yield were investigated in seven wild and one cultivated species of Dioscorea from Koraput, India, in order to find out their overall adaptability to the environment. The leaf photosynthetic rate, transpiration, stomatal conductance, water-use efficiency, carboxylation efficiency, and photosynthetic pigments were significantly higher in some wild species compared to the cultivated species. In addition, some wild species showed better photochemical efficiency of PSII, photochemical quenching, and electron transport rate in comparison to cultivated one. Furthermore, leaf dry matter accumulation and tuber yield was also higher in some wild species compared to the cultivated species. Taken together, the wild species, such as D. oppositifolia, D. hamiltonii, and D. pubera, showed the superior photosynthetic efficiency compared to the cultivated D. alata and they could be used for future crop improvement programs.

Additional key words

chlorophyll fluorescence gas exchange photosynthesis tuber yield 

Abbreviations

Car

carotenoids

CE

carboxylation efficiency (= PN/Ci)

Chl

chlorophyll

Ci

intercellular CO2 concentration

DM

dry mass

DMA

dry matter accumulation

E

transpiration rate

ETR

electron transport rate

F0

minimal fluorescence yield of the dark-adapted state

F0'

minimal fluorescence yield of the light-adapted state

Fm

maximal fluorescence yield of the darkadapted state

Fm'

maximal fluorescence yield of the light-adapted state

Fv/Fm

maximal quantum yield of PSII photochemistry

FM

fresh mass

gs

stomatal conductance

LSD

least significant difference

NPQ

nonphotochemical quenching

PN

net photosynthetic rate

qP

photochemical quenching coefficient

RWC

relative water content

WUE

water-use efficiency (= PN/E)

ФPSII

effective quantum yield of PSII photochemistry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abenavoli M.R., Leone M., Sunseri F. et al.: Root phenotyping for drought tolerance in Bean landraces from Calabria (Italy).–J. Agron. Crop. Sci. 202: 1–12, 2016.CrossRefGoogle Scholar
  2. Abhilash Joseph. E., Radhakrishnan V.V., Chandramohanan K.T., Mohanan K.V.: Reduction of major photosynthetic pigments under salinity stress in some native rice cultivars of North Kerala, India.–Int. J. Recent Sci. Res. 5: 1602–1611, 2014.Google Scholar
  3. Aighewi B.A., Ekanayake I.J.: In situ chlorophyll fluoresence and related growth of Guinea yam at different ages.–Trop. Sci. 44: 201–206, 2004.CrossRefGoogle Scholar
  4. Amanze N.J., Agbo N.J., Eke-Okoro O.N., Njoku D.N.: Selection of yam seeds from open pollination for adoption in yam (Dioscorea rotundata Poir) production zones in Nigeria.–J. Plant Breed. Crop. Sci. 3: 68–73, 2011.Google Scholar
  5. Arnon D.I.: Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris.–Plant Physiol. 24: 1–15, 1949.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bailey S., Horton P., Walters R.G.: Acclimation of Arabidopsis thaliana to the light environment: The relationship between photosynthetic function and chloroplast composition.–Planta 218: 793–802, 2004.CrossRefPubMedGoogle Scholar
  7. Batra N.G., Kumari N., Sharma V.: Photosynthetic performance of Ocimum sanctum morphotypes in a semiarid region.–J. Herbs Spices Med. Plants 22: 211–224, 2016.CrossRefGoogle Scholar
  8. Behera K.K., Maharana T., Sahoo S., Prusti A.: Biochemical quantification of protein, fat, starch, crude fiber, ash and dry matter content in different collection and greater yam (Dioscorea alata L.) found in Orissa.–Nat. Sci. 7: 24–32, 2009.Google Scholar
  9. Below E.F.: Nitrogen metabolism and crop productivity.–In: Pessarakli M. (ed.): Handbook of Plant and Crop Physiology. Pp. 385–406. University of Arisona, Tucson, Arizona 2001.Google Scholar
  10. Dansi A., Mignouna H.D., Zoundjihékpon J. et al.: Morphological diversity, cultivar groups and possible descent in the cultivated yams (Dioscorea cayenensisDioscorea rotundata complex) of Benin Republic.–Genet. Resour. Crop Ev. 46: 371–388, 1999.CrossRefGoogle Scholar
  11. Ding Z.S., Li T., Zhu X.G. et al.: Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations.–Crop. J. 2: 22–27, 2014.CrossRefGoogle Scholar
  12. Dudeja S.S., Chaudhary P.: Fast chlorophyll fluorescence transient and nitrogen fixing ability of chickpea nodulation variants.–Photosynthetica 43: 253–259, 2005.CrossRefGoogle Scholar
  13. Edison S., Unnikrishnan M., Vimala B. et al.: Biodiversity of tropical tuber crops in India.–In: Edison S. (ed.): NBA Scientific Bulletin No. 7. Pp. 60. National Biodiversity Authority of India, Chennai, Tamilnadu, India 2006.Google Scholar
  14. Elfeky S.S., Osman M.E.H., Hamada S.M., Hasan A.M.: Effect of salinity and drought on growth criteria and biochemical analysis of Catharanthus roseus shoot.–Int. J. Bot. 3: 202–207, 2007.CrossRefGoogle Scholar
  15. Evans J.R.: Improving photosynthesis.–Plant. Physiol. 162: 1780–1793, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gupta S.K., Prakash J., Srivastava S.: Validation of claim of Tulsi, Ocimum sanctum L. as a medicinal plant.–Ind. J. Exp. Biol. 40: 765–773, 2002.Google Scholar
  17. Haritha G., Vishnukiran T., Yugandhar P. et al.: Introgressions from Oryza rufipogon increase photosynthetic efficiency of KMR3 rice lines.–Rice Sci. 24: 85–96, 2017.CrossRefGoogle Scholar
  18. Hayat S., Khalique G., Irfan M. et al.: Physiological changes induced by chromium stress in plants: an overview.–Protoplasma 249: 599–611, 2012.CrossRefPubMedGoogle Scholar
  19. Kajala K., Covshoff S., Karki S. et al.: Strategies for engineering a two-celled C4 photosynthetic pathway into rice.–J. Exp. Bot. 62: 3001–3010, 2011.CrossRefPubMedGoogle Scholar
  20. Kao W.Y., Tsai T.T., Shih C.N.: Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments.–Photosynthetica 41: 415–419, 2003.CrossRefGoogle Scholar
  21. King G.A., Risimeri J.B.: Effects of planting density, height of staking and variety on yield and yield components of the lesser yam (Dioscorea esculenta).–Trop. Agric. 69: 129–132, 1992.Google Scholar
  22. Kiran T.V., Rao Y.V., Subrahmanyam D. et al.: Variation in leaf photosynthetic characteristics in wild rice species.–Photosynthetica 51: 350–358, 2013.CrossRefGoogle Scholar
  23. Kondamudi R., Swamy K.N., Rao Y.V. et al.: Gas exchange, carbon balance and stomatal traits in wild and cultivated rice (Oryza sativa L.) genotypes.–Acta Physiol. Plant. 38: 160, 2016.CrossRefGoogle Scholar
  24. Kouakou M.D., Dabonne S., Guehi, T., Kuoame L.P.: Effects of post-harvest storage on some biochemical parameters of different parts of two yams species (Dioscorea spp).–Afr. J. Food Sci. 1: 1–9, 2010.Google Scholar
  25. Kumar S., Parida A.K., Jena P.K.: Ethno-Medico-Biology of Ban-Aalu (Dioscorea species): A neglected tuber crops of Odisha, India.–Int. J. Pharm. Life Sci. 4: 3143–3150, 2013.Google Scholar
  26. Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.–Biochem. Soc. T. 11: 591–592, 1983.CrossRefGoogle Scholar
  27. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.: Protein measurement with the folin phenol reagent.–J. Biol. Chem. 193: 265–275, 1951.PubMedGoogle Scholar
  28. Lüttge U., Scarano F.R.: Synecological comparisons sustained by ecophysiological fingerprinting of intrinsic photosynthetic capacity of plants as assessed by measurements of light response curves.–Rev. Bras. Bot. 30: 355–364, 2007.CrossRefGoogle Scholar
  29. Makino A.: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat.–Plant. Physiol. 155: 125–129, 2011.CrossRefPubMedGoogle Scholar
  30. Martin F.W., Degras L.: Tropical Yams and their Potential. Part. 6. Minor Cultivated Dioscorea species. Agricultural Handbook No. 538. Pp. 23. Science and education administration, U.S. Department of Agriculture (USDA) and USAID, Washington, USA 1978.Google Scholar
  31. Mathur S., Kalaji H.M., Jajoo A.: Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant.–Photosynthetica 54: 185–192, 2016.CrossRefGoogle Scholar
  32. Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  33. Mishra S., Chaudhury S.S.: Ethnobotanical flora used by four major tribes of Koraput, Odisha, India.–Genet. Resour. Crop Ev. 59: 793–804, 2012.CrossRefGoogle Scholar
  34. Mishra S., Swain S., Chaudhury S., Ray S.: Wild edible tubers (Dioscorea spp.) and their contribution to the food security of tribes of Jeypore tract, Orissa, India.–PGR News. 156: 63–67, 2011.Google Scholar
  35. Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.–Plant Physiol. 125: 1558–1566, 2001.Google Scholar
  36. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.–J. Exp. Bot. 64: 3983–3998, 2013.CrossRefPubMedGoogle Scholar
  37. Ngo Ngwe M.F.S., Omokolo D.N., Joly S.: Evolution and phylogenetic diversity of yam species (Dioscorea spp.): Implication for conservation and agricultural practices.–PLoS ONE 10: e145364, 2015.CrossRefGoogle Scholar
  38. Padhan B., Panda D.: Wild tuber species diversity and its ethnomedicinal use by tribal people of Koraput district of Odisha, India.–J. Nat. Prod. Resour. 2: 33–36, 2016.Google Scholar
  39. Pinnola A., Dall’Osto L., Gerotto C. et al.: Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.–Plant Cell 25: 3519–3534, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Placido D., Campbell M.T., Folsom J.J. et al.: Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat (Triticum aestivum).–Plant. Physiol. 161: 1806–1819, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Puteh A.B., Mondal M.M.A., Ismail M.R., Latif M.A.: Grain sterility in relation to dry mass production and distribution in rice (Oryza sativa L.).–BioMed. Res. Int. 2014: 302179, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Richards R.A.: Selectable traits to increase crop photosynthesis and yield of grain crops.–J. Exp. Bot. 51: 447–458, 2000.CrossRefPubMedGoogle Scholar
  43. Rodríguez-Montero W.: Crop Physiology of the Greater Yam (Dioscorea alata). Pp. 151. Ulrich E. Grauer, Stuttgart 1997.Google Scholar
  44. Sayed O.H.: Chlorophyll fluorescence as a tool in cereal crop research.–Photosynthetica 41: 321–330, 2003.CrossRefGoogle Scholar
  45. Souza R.P., Machadoa E.C., Silva I.A.B. et al.: Photosynthesis gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery.–Environ. Exp. Bot. 51: 45–56, 2004.CrossRefGoogle Scholar
  46. Teng S., Qian Q., Zeng D.L. et al.: QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.).–Euphytica 135: 1–7, 2004.CrossRefGoogle Scholar
  47. Türkan I., Bor M., Özdemir F., Koca H.: Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant P. acutifolius Gray and drought sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress.–Plant Sci. 168: 223–231, 2005.CrossRefGoogle Scholar
  48. Yeo M.E., Yeo A.R., Flowers T.J.: Photosynthesis and photorespiration in the genus Oryza.–J. Exp. Bot. 45: 553–560, 1994.CrossRefGoogle Scholar
  49. Zhu X.G., Long S.P., Ort D.R.: What is the maximum efficiency with which photosynthesis can convert solar energy into biomass.–Curr. Opin. Biotech. 19: 153–59, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Department of Biodiversity and Conservation of Natural ResourcesCentral University of OrissaKoraput, OdishaIndia

Personalised recommendations