Diurnal temperature-related variations in photosynthetic enzyme activities of two C4 species of Chenopodiaceae grown in natural environment

  • T. Y. Orujova
  • S. M. Bayramov
  • U. A. Gurbanova
  • H. G. Babayev
  • M. N. Aliyeva
  • N. M. Guliyev
  • Y. M. Feyziyev
Article
  • 6 Downloads

Abstract

The effects of the diurnal variations in ambient temperature on some C3 and C4 enzymes in the Salsola dendroides and Suaeda altissima species of Chenopodiaceae family were studied during the intensive vegetation period. Activities of phosphoenolpyruvate carboxylase (PEPC) and cytosolic aspartate aminotransferase (AsAT) were shown to decrease in both species in the afternoon and evening. The activity of the mitochondrial AsAT decreased in S. altissima, remained relatively constant in S. dendroides during the day. The activity of alanine aminotransferase was high in the S. dendroides species in the morning and evening and decreased in the S. altissima species by the evening. Glucose-6-phosphate activated PEPC in both species throughout the day. The study of the redox status-regulated C3 enzymes showed temperature-related increases in NADP-glyceraldehyde 3-phosphate dehydrogenase activity in both plants, in fructose-2,6-bisphosphatase activity in the S. altissima species, and in NADP-MDH activity in the S. dendroides species in the afternoon.

Additional key words

C4 photosynthesis Chenopodiaceae photosynthetic enzymes temperature 

Abbreviations

AlAT

alanine aminotransferase

AsAT

aspartate aminotransferase

BS

bundle sheath

Chl

chlorophyll

EDTA

ethylenediaminetetraacetic acid

FBPase

fructose-2,6-bisphosphatase

Fv/Fm

maximum quantum efficiency of PSII

Glu-6-P

glucose-6-phosphate

M

mesophyll

MDH

malate dehydrogenase

ME

malic enzyme

2-ME

2-β-mercaptoetanol

NADPGAPDH

NADP-glyceraldehyde phosphate dehydrogenase

PEP(C)

phosphoenolpyruvate (carboxylase)

Tris

tris(hydroxymethyl) aminomethane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhani H., Trimborn P., Ziegler H.: Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance.–Plant Syst. Evol. 206: 187–221, 1997.CrossRefGoogle Scholar
  2. Alfonso S.U., Brüggemann W.: Photosynthetic responses of a C3 and three C4 species of the genus Panicum (s.l.) with different metabolic subtypes to drought stress.–Photosynth. Res. 112: 175–191, 2012.CrossRefPubMedGoogle Scholar
  3. Avasthi K., Izui K., Raghavendra A.S.: Interplay of light and temperature during the planta modulation of C4 phosphoenolpyruvate carboxylase from the leaves of Amaranthus hypochondriacus L.: diurnal and seasonal effects manifested at molecular levels.–J. Exp. Bot. 62: 1017–1026, 2011.CrossRefPubMedGoogle Scholar
  4. Avasthi U.K., Raghavendra A.S.: Mutual stimulation of temperature and light effects on C4 phosphoenolpyruvate carboxylase in leaf discs and leaves of Amaranthus hypochondriacus.–J. Plant Physiol. 165: 1023–1032, 2008.CrossRefPubMedGoogle Scholar
  5. Bailey K.J., Gray J.E., Walker R.P., Leegood R.C.: Coordinate regulation of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase by light and CO2 during C4 photosynthesis.–Plant Physiol. 144: 479–486, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bradford M.: Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.–Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  7. Brestic M., Živčák M., Kunderliková K., Allakhverdiev S.I.: High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines.–Photosynth. Res. 130: 251–266, 2016.CrossRefPubMedGoogle Scholar
  8. Chinthapalli B., Murmu J., Raghavendra A.S.: Dramatic difference in the responses of phosphoenolpyruvate carboxylase to temperature in leaves of C3 and C4 plants.–J. Exp. Bot. 54: 707–714, 2003.CrossRefPubMedGoogle Scholar
  9. Chinthapalli B., Chitra D.S.V., Radhavendra A.S.: Temperature modulation of the activity and malate inhibition of the phosphoenolpyruvate carboxylase from leaves of Alternanthera pengens, compared to that of Lycoperisicon esculentum.–Am. J. Biosci. 2: 238–243, 2014.CrossRefGoogle Scholar
  10. Chollet R., Vidal J., O’Leary M.H.: Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants.–Annu. Rev. Plant Phys. 47: 273–298, 1996.CrossRefGoogle Scholar
  11. Du Y.-Ch., Nose A., Kondo A., Wasano K.: Diurnal changes in photosynthesis in sugarcane leaves. I. Carbon dioxide exchange rate, photosynthesis enzyme activities and metabolite levels relating to the C4 pathway and the Calvin cycle.–Plant Prod. Sci. 3: 3–8, 2000.CrossRefGoogle Scholar
  12. Dwyer S.A., Ghannoum O., Nicotra A., von Caemmerer S.: High temperature acclimation of C4 photosynthesis in linked to changes in photosynthetic biochemistry.–Plant Cell Environ. 30: 53–66, 2007.CrossRefPubMedGoogle Scholar
  13. Edwards G.E., Franceschi V.R., Voznesenkaya E.V.: Single cell C4 photosynthesis versus the dual-cell (Kranz) paradigm.–Annu. Rev. Plant Biol. 55: 173–196, 2004.CrossRefPubMedGoogle Scholar
  14. Giglioli-Guivarc’h N., Pierre J.-N., Brown S. et al.: The lightdependent transduction pathway controlling the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase in protoplasts from Digitaria sanguinalis.–Plant Cell 8: 573–586, 1996.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gowik U., Westhoff P.: The path from C3 and C4 photosynthesis.–Plant Physiol. 155: 56–63, 2011.CrossRefPubMedGoogle Scholar
  16. Hatch M.D.: C4 photosynthesis in a unique blend of modified biochemistry, anatomy and ultrastructure.–BBA-Rev. Bioenergetics 895: 81–106, 1987.Google Scholar
  17. Hibberd J.M., Covshoff S.: The regulation of gene expression required for C4 photosynthesis.–Annu. Rev. Plant Biol. 61: 181–207, 2010.CrossRefPubMedGoogle Scholar
  18. Holaday A.S., Martindale W., Alred R. et al.: Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature.–Plant Physiol. 98: 1105–1114, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Leegood R.C.: C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants.–J. Exp. Bot. 53: 581–590, 2002.CrossRefPubMedGoogle Scholar
  20. Long S.P.: Environmental responses.–In: Sage R.F., Monson R.K. (ed.): C4 Plant Biology. Pp. 215–249. Academic Press, San Diego 1999.CrossRefGoogle Scholar
  21. Movsumova F.G., Babayev H.G., Zeynalova M.H., Feyziyev Y.M.: [Taxonomic composition of Chenopodiaceae Vent. family in Absheron flora and its ecological analysis.]–Proc. Azerbaijan Natl. Acad. Sci. (Biol. Med. Sci.) 69: 27–35, 2014. [In Russian]Google Scholar
  22. O’Leary B., Park J., Plaxton W.C.: The remarkable diversity ofplant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs.–Biochem. J. 436: 15–34, 2011.CrossRefPubMedGoogle Scholar
  23. Pyankov V., Ziegler H., Kuz’min A., Edwards G.E.: Origin and evolution of C4 photosynthesis in the tribe Salsoleae (Chenopodiaceae) based on anatomical and biochemical types in leaves and cotyledons.–Plant Syst. Evol. 230: 43–74, 2001.CrossRefGoogle Scholar
  24. Pyankov V.I., Voznesenskaya E.V., Kuz’min A.N. et al.: Occurrence of C3 and C4 photosynthesis in cotyledons and leaves of Salsola species (Chenopodiaceae).–Photosynth. Res. 63: 69–84, 2000.CrossRefPubMedGoogle Scholar
  25. Rosnow J.J., Edwards G.E., Roalson E.H.: Positive selection of Kranz and non-Kranz C4 phosphoenolpyruvate carboxylase amino acids in Suaedoideae (Chenopodiaceae).–J. Exp. Bot. 65: 3595–3607, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sage R.F., Christin P.A., Edwards E.J.: The C4 plant lineages of planet Earth.–J. Exp. Bot. 62: 3155–3169, 2011.CrossRefPubMedGoogle Scholar
  27. Sage R.F., Kocacinar F., Kubien D.S.: C4 photosynthesis and temperature.–In: Raghavendra A.S., Sage R.F. (ed.): C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Pp. 161–195. Springer Sci+Business Media BV, Dordrecht 2011.Google Scholar
  28. Schüssler Ch., Freitag H., Koteyeva N. et al.: Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae).–J. Exp. Bot. 68: 207–223, 2017.CrossRefPubMedGoogle Scholar
  29. Taniguchi M., Kobe M., Kato M., Sugiyama T.: Aspartate aminotransferase isozymes in Panicum miliaceum L., an NAD-Malic enzyme-type C4 plant: Comparison of enzymatic-properties, primary structures, and expression patterns.–Arch. Biochem. Biophys. 318: 295–306, 1995.CrossRefPubMedGoogle Scholar
  30. Taniguchi M., Sugiyama T.: Aspartate aminotransferase from Eleusine coracana, a C4 plant: Purification, characterization, and preparation of antibody.–Arch. Biochem. Biophys. 282: 427–432, 1990.CrossRefPubMedGoogle Scholar
  31. Yamori W., Hikosaka K., Way D.A.: Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation.–Photosynth. Res. 119: 101–117, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • T. Y. Orujova
    • 1
  • S. M. Bayramov
    • 1
  • U. A. Gurbanova
    • 1
  • H. G. Babayev
    • 1
  • M. N. Aliyeva
    • 1
  • N. M. Guliyev
    • 1
  • Y. M. Feyziyev
    • 1
  1. 1.Institute of Molecular Biology and BiotechnologiesNational Academy of SciencesBakuAzerbaijan

Personalised recommendations