Photosynthetica

, Volume 56, Issue 1, pp 279–293 | Cite as

Ferredoxin: the central hub connecting photosystem I to cellular metabolism

Review
  • 70 Downloads

Abstract

Ferredoxin (Fd) is a small soluble iron-sulfur protein essential in almost all oxygenic photosynthetic organisms. It contains a single [2Fe-2S] cluster coordinated by four cysteine ligands. It accepts electrons from the stromal surface of PSI and facilitates transfer to a myriad of acceptors involved in diverse metabolic processes, including generation of NADPH via Fd-NADP-reductase, cyclic electron transport for ATP synthesis, nitrate reduction, nitrite reductase, sulfite reduction, hydrogenase and other reductive reactions. Fd serves as the central hub for these diverse cellular reactions and is integral to complex cellular metabolic networks. We describe advances on the central role of Fd and its evolutionary role from cyanobacteria to algae/plants. We compare structural diversity of Fd partners to understand this orchestrating role and shed light on how Fd dynamically partitions between competing partner proteins to enable the optimum transfer of PSI-derived electrons to support cell growth and metabolism.

Additional key words

cellular metabolism electron transfer ferredoxin global interaction oxidation-reduction 

Abbreviation

APC

allophycocyanin

BR

bilin reductases

CET

cyclic electron transfer

Cyt

cytochrome

Fd

ferredoxin

Fdred

reduced Fd

Fdox

oxidized Fd

FAD

flavin adenine dinucleotide

FMN

flavin mononucleotide

FNR

Fd-NADP+-reductase

FNRred

reduced FNR

FNRox

oxidized FNR

FTR

Fd:Tro reductase

GnS

glutamine synthase

GS

glutamate synthase

Kd

dissociation constant

Ket

electron transfer rate constant

NDH

NADPH dehydrogenase

NiR

nitrite reductase

NR

nitrate reductase

PC

phycocyanin

PCB

3E/3Z phycocyanobilin

PE

phycoerythrin

PEB

3Z/3E phycoerythrobilin

PΦB

3E/3Z phytochromobilin

RMSD

root-mean-square deviation

SiR

sulfite reductase

Tro

thioredoxin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagi J.M.: The participation of a ferredoxin of Clostridium nigrificans in sulfite reduction.–Biochem. Biophys. Res. Co. 21: 72–77, 1965.Google Scholar
  2. Akashi T., Matsumura T., Ideguchi T.: Comparison of the electrostatic binding sites on the surface of ferredoxin for two ferredoxin-dependent enzymes, ferredoxin-NADP(+) reductase and sulfite reductase.–J. Biol. Chem. 274: 29399–29405, 1999.PubMedGoogle Scholar
  3. Appel J., Schulz R.: Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising?–J. Photoch. Photobio. B 47: 1–11, 1998.Google Scholar
  4. Arizmendi J.M., Serra J.L.: Composition of the ferredoxin-nitrite reductase from the cyanobacterium Phormidium laminosum.–Biochem. Soc. T. 18: 637–638, 19Google Scholar
  5. Arnon D.I., Allen M.B., Whatley F.R.: Photosynthesis by isolated chloroplasts.–Nature 174: 394–396, 1954.PubMedGoogle Scholar
  6. Arnon D.I., Tsujimoto H.Y., McSwain B.D.: Ferredoxin and photosynthetic phosphorylation.–Nature 214: 562–566, 1967.PubMedGoogle Scholar
  7. Arnon D.I., Whatley F.R., Allen M.B.: Triphosphopyridine nucleotide as a catalyst of photosynthetic phosphorylation.–Nature 180: 182–185, 1957.PubMedGoogle Scholar
  8. Balsera M., Uberegui E., Susanti D. et al.: Ferredoxin: thioredoxin reductase (FTR) links the regulation of oxygenic photosynthesis to deeply rooted bacteria.–Planta 237: 619–635, 2013.PubMedGoogle Scholar
  9. Beale S.I., Cornejo J.: Biosynthesis of phycobilins. Ferredoxinmediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium.–J. Biol. Chem. 266: 22328–22332, 1991.PubMedGoogle Scholar
  10. Benemann J.R., Berenson J.A., Kaplan N.O., Kamen M.D.: Hydrogen evolution by a chloroplast-ferredoxin-hydrogenase system.–P. Natl. Acad. Sci. USA 70: 2317–2320, 1973.Google Scholar
  11. Bes M.T., Parisini E., Inda L.A. et al.: Crystal structure determination at 1.4 Å resolution of ferredoxin from the green alga Chlorella fusca.–Structure 7: 1201–1202, 19PubMedGoogle Scholar
  12. Blanco N.E., Ceccoli R.D., Via M.V. et al.: Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow.–Plant Physiol. 161: 866–879, 2013.PubMedGoogle Scholar
  13. Böhme H.: On the role of ferredoxin and ferredoxin-NADP+ reductase in cyclic electron transport of spinach chloroplasts.–FEBS J. 72: 283–289, 1977.Google Scholar
  14. Brand J.J., Wright J.N., Lien S.: Hydrogen production by eukaryotic algae.–Biotechnol. Bioeng. 33: 1482–1488, 1989.PubMedGoogle Scholar
  15. Buchanan B.B.: Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development.–Arch. Biochem. Biophys. 288: 1–9, 1991.PubMedGoogle Scholar
  16. Buchanan B.B., Schürmann P., Wolosiuk R.A., Jacquot J.P.: The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond.–Photosynth. Res. 73: 215–222, 2002.PubMedGoogle Scholar
  17. Busch A.W.U., Reijerse E.J., Lubitz W. et al.: Structural and mechanistic insight into the ferredoxin-mediated two-electron reduction of bilins.–Biochem. J. 439: 257–264, 2011.PubMedGoogle Scholar
  18. Cashman D.J., Zhu T., Simmerman R.F. et al.: Molecular interactions between photosystem I and ferredoxin: an integrated energy frustration and experimental model.–J. Mol. Recognit. 27: 597–608, 2014.PubMedGoogle Scholar
  19. Chang C.H., King P.W., Ghirardi M.L., Kim K.: Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii.–Biophys. J. 93: 3034–3045, 20PubMedPubMedCentralGoogle Scholar
  20. Chen J.S., Blanchard D.K.: A simple hydrogenase-linked assay for ferredoxin and flavodoxin.–Anal. Biochem. 93: 216–222, 1979.PubMedGoogle Scholar
  21. Curtis V.A., Siedow J.N., San Pietro A.: Studies on photosystem I. II. Involvement of ferredoxin in cyclic electron flow.–Arch. Biochem. Biophys. 158: 898–902, 1973.PubMedGoogle Scholar
  22. Dai S., Johansson K., Miginiac-Maslow M.: Structural basis of redox signaling in photosynthesis: structure and function of ferredoxin:thioredoxin reductase and target enzymes.–Photosynth. Res. 79: 233–248, 2004.PubMedGoogle Scholar
  23. Dai S., Schwendtmayer C., Johansson K. et al.: How does light regulate chloroplast enzymes? Structure–function studies of the ferredoxin/thioredoxin system.–Q. Rev. Biophys. 33: 67–108, 2000.PubMedGoogle Scholar
  24. DalCorso G., Pesaresi P., Masiero S. et al: A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis.–Cell 132: 273–285, 2008.PubMedGoogle Scholar
  25. Dammeyer T., Frankenberg-Dinkel N.: Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms.–Photochem. Photobiol. S. 7: 1121–1130, 2008.Google Scholar
  26. Davenport H.E., Hill R., Whatley F.R.: A natural factor catalyzing reduction of methaemoglobin by isolated chloroplasts.–P. Roy. Soc. B-Biol. Sci. 139: 346–358, 1952.Google Scholar
  27. Diakonova A.N., Khrushchev S.S., Kovalenko I.B. et al.: Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction.–Phys. Biol. 13: 056004, 2016.PubMedGoogle Scholar
  28. Domínguez-Martín M.A., Gómez-Baena G., Díez J. et al.: Quantitative proteomics shows extensive remodeling induced by nitrogen limitation in Prochlorococcusmarinus SS120.–mSystems 2: m8–17, 2017.Google Scholar
  29. Dose M.M., Hirasawa M., Kleis-SanFrancisco S. et al.: The ferredoxin-binding site of ferredoxin: Nitrite oxidoreductase. Differential chemical modification of the free enzyme and its complex with ferredoxin.–Plant Physiol. 114: 1047–1053, 1997.PubMedPubMedCentralGoogle Scholar
  30. Droux M., Miginiac-Maslow M., Jacquot J.P. et al.: Ferredoxinthioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation.–Arch. Biochem. Biophys. 256: 372–380, 1987.PubMedGoogle Scholar
  31. Essemine J., Qu M., Mi H., Zhu X.G.: Response of chloroplast NAD(P)H dehydrogenase-mediated cyclic electron flow to a shortage or lack in ferredoxin-quinone oxidoreductasedependent pathway in rice following short-term heat stress.–Front. Plant Sci. 7: 383, 2016.PubMedPubMedCentralGoogle Scholar
  32. Forestier M., King P., Zhang L. et al.: Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions.–Eur. J. Biochem. 270: 2750–2758, 2003.PubMedGoogle Scholar
  33. Foyer C.H., Ferrario-Méry S., Noctor G.: Interactions between carbon and nitrogen metabolism.–In: Lea P.J., Morot-Gaudry J.-F. (ed.): Plant Nitrogen. Pp. 237–254. Springer, Berlin 2001.Google Scholar
  34. Fredricks W.W., Stadtman E.R.: The role of ferredoxin in the hydrogenase system from Clostridium kluyveri.–J. Biol. Chem. 240: 4065–4071, 1965.PubMedGoogle Scholar
  35. Fry I., Papageorgiou G., Telor E., Packer L.: Reconstitution of a system for H-2 Evolution with chloroplasts, ferredoxin, and hydrogenase.–Z. Naturforsch. C 32: 110–117, 1977.Google Scholar
  36. Garcia-Sanchez M.I., Gotor C., Jacquot J.P. et al.: Critical residues of Chlamydomonas reinhardtii ferredoxin for interaction with nitrite reductase and glutamate synthase revealed by site-directed mutagenesis.–Eur. J. Biochem. 250: 364–368, 1997.PubMedGoogle Scholar
  37. Ghirardi M.L.: Hydrogen production by photosynthetic green algae.–Indian J. Biochem. Bio. 43: 201–210, 2006.Google Scholar
  38. Gómez-Lojero C., Pérez-Gómez B., Shen G. et al.: Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002.–Biochemistry 42: 13800–13811, 2003.PubMedGoogle Scholar
  39. Goñi G., Serrano A., Frago S. et al.: Flavodoxin-mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena: role of flavodoxin hydrophobic residues in protein-protein interactions.–Biochemistry 47: 1207–1217, 2008.PubMedGoogle Scholar
  40. Gou P., Hanke G.T., Kimata-Ariga Y. et al.: Higher order structure contributes to specific differences in redox potential and electron transfer efficiency of root and leaf ferredoxins.–Biochemistry 45: 14389–14396, 2006.PubMedGoogle Scholar
  41. Gutekunst K., Chen X., Schreiber K. et al.: The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions.–J. Biol. Chem. 289: 1930–1937, 2014.PubMedGoogle Scholar
  42. Halbleib C.M., Ludden P.W.: Regulation of biological nitrogen fixation.–J. Nutr. 130: 1081–1084, 2000.PubMedGoogle Scholar
  43. Hanke G., Mulo P.: Plant type ferredoxins and ferredoxindependent metabolism.–Plant Cell Environ. 36: 1071–1084, 2013.PubMedGoogle Scholar
  44. Happe T., Kaminski A.: Differential regulation of the Fehydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii.–Eur. J. Biochem. 269: 1022–1032, 20PubMedGoogle Scholar
  45. Hase T., Schürmann P., Knaff D.B.: The interaction of ferredoxin with ferredoxin-dependent enzymes.–In: Golbeck J.H. (ed.): Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase. Pp. 477–498. Springer, Dordrecht 2006.Google Scholar
  46. Hennies H.H.: (1975) [A ferredoxin-linked sulfite reductase from Spinacia oleracea.]–Z. Naturforsch. C 30: 359–362, 1975.PubMedGoogle Scholar
  47. Hertle A.P., Blunder T., Wunder T. et al.: PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow.–Mol. Cell 49: 511–523, 2013.PubMedGoogle Scholar
  48. Hirasawa M., Chang K.T., Knaff D.B.: The interaction of ferredoxin and glutamate synthase–cross-linking and immunological studies.–Arch. Biochem. Biophys. 286: 171–177, 1991.PubMedGoogle Scholar
  49. Hirasawa M., de Best J.H., Knaff D.B.: The effect of lysinemodifying and arginine-modifying reagents on spinach ferredoxin–nitrite oxidoreductase.–BBA-Bioenergetics 1140: 304–312, 1993.Google Scholar
  50. Hirasawa M., Hurley J.K., Salamon Z. et al.: Oxidation-reduction and transient kinetic studies of spinach ferredoxin-dependent glutamate synthase.–Arch. Biochem. Biophys. 330: 209–215, 1996.PubMedGoogle Scholar
  51. Hirasawa M., Knaff D.B.: The role of lysine and arginine residues at the ferredoxin-binding site of spinach glutamate synthase.–BBA-Bioenergetics 1144: 85–91, 1993.Google Scholar
  52. Hirasawa M., Tollin G., Salamon Z., Knaff D.B.: Transient kinetic and oxidation-reduction studies of spinach ferredoxin:nitrite oxidoreductase.–Biochim. Biophys. Acta 1185: 336–345, 1994.PubMedGoogle Scholar
  53. Hirasawa M., Tripathy J.N., Somasundaram R. et al.: The interaction of spinach nitrite reductase with ferredoxin: a sitedirected mutation study.–Mol. Plant. 2: 407–415, 2009.PubMedPubMedCentralGoogle Scholar
  54. Hirasawa M., Tripathy J.N., Sommer F. et al.: Enzymatic properties of the ferredoxin-dependent nitrite reductase from Chlamydomonas reinhardtii. Evidence for hydroxylamine as a late intermediate in ammonia production.–Photosynth. Res. 103: 67–77, 2010.PubMedGoogle Scholar
  55. Hosler J.P., Yocum C.F.: Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport: Effect of DCMU and the NADPH/NADP ratio.–Plant Physiol. 83: 965–969, 1987.PubMedPubMedCentralGoogle Scholar
  56. Hu X., Kato Y., Sumida A. et al.: The SUFBC2 D complex is required for the biogenesis of all major classes of plastid Fe-S proteins.–Plant J. 90: 235–248, 2017.PubMedGoogle Scholar
  57. Hurley J.K., Hazzard J.T., Martínez-Júlvez M. et al.: Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials.–Protein Sci. 8: 1614–1622, 1999.PubMedPubMedCentralGoogle Scholar
  58. Hurley J.K., Tollin G., Medina M., Gómez-Moreno C.: Electron transfer from ferredoxin and flavodoxin to ferredoxin:NADP+ reductase.–In: Golbeck J.H. (ed.): Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase. Pp. 455–476. Springer, Dordrecht 2006.Google Scholar
  59. Ivanov B.N., Tikhonova L.N.: [Porton uptake by isolated chloroplasts during cyclic and non-cyclic electron transport catalyzed by photosystem I in the presence of ferredoxin].–Biokhimiia 44: 983–989, 1979.PubMedGoogle Scholar
  60. Iwai M., Takizawa K., Tokutsu R. et al.: Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis.–Nature 464: 1210–1213, 2010.PubMedGoogle Scholar
  61. Kameda H., Hirabayashi K., Wada K., Fukuyama K.: Mapping of protein-protein interaction sites in the plant-type [2Fe-2S] ferredoxin.–PLoS ONE 6: e21947, 2011.PubMedPubMedCentralGoogle Scholar
  62. Kapoor K., Cashman D.J., Nientimp L. et al.: Binding mechanisms of electron transport proteins with cyanobacterial photosysten I: an integrated computational and experimental model.–J. Phys. Chem. B. 122: 1026–1036, 2018.PubMedGoogle Scholar
  63. Keister D.L., San Pietro A., Stolzenbach F.E.: Photosynthetic pyridine nucleotide reductase. III. Effect of phosphate acceptor system on triphosphopyridine nucleotide reduction.–Arch. Biochem. Biophys. 94: 187–195, 1961.PubMedGoogle Scholar
  64. Kim J.Y., Kinoshita M., Kume S. et al.: Non-covalent forces tune the electron transfer complex between ferredoxin and sulfite reductase to optimize enzymatic activity.–Biochem. J. 473: 3837–3854, 2016a.PubMedGoogle Scholar
  65. Kim J.Y., Nakayama M., Toyota H. et al.: Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin.–J. Biochem. 160: 101–109, 2016b.PubMedGoogle Scholar
  66. Kimata-Ariga Y., Hase T.: Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.–PLoS ONE 9: e108965, 2014.PubMedPubMedCentralGoogle Scholar
  67. Koguchi O., Tamura G.: Isolation and partial characterization of homogeneous ferredoxin-sulfite reductase from a red alga, Porphyra yezoensis.–Agr. Biol. Chem. Tokyo 53: 1653–1662, 1989.Google Scholar
  68. Kosourov S., Seibert M., Ghirardi M.L.: Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H-2-producing Chlamydomonas reinhardtii cultures.–Plant Cell Physiol. 44: 146–155, 2003.PubMedGoogle Scholar
  69. Kovalenko I.B., Diakonova A.N., Abaturova A.M. et al.: Direct computer simulation of ferredoxin and FNR complex formation in solution.–Phys Biol 7: 026001, 2010.PubMedGoogle Scholar
  70. Kovalenko I.B., Abaturova A.M., Riznichenko G.Y. et al.: Computer simulation of interaction of photosystem 1 with plastocyanin and ferredoxin.–Biosystems 103: 180–187, 2011.PubMedGoogle Scholar
  71. Krendeleva T.E., Kukarskikh G.P., Timofeev K.N. et al.: Ferredoxin-NADP reductase is involved in the ferredoxindependent cyclic electron transport in isolated thylakoids.–Dokl. Biochem. Biophys. 379: 265–268, 2001.PubMedGoogle Scholar
  72. Krueger R.J., Siegel L.M.: Spinach siroheme enzymes: Isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase.–Biochemistry 21: 2892–2904, 1982a.PubMedGoogle Scholar
  73. Krueger R.J., Siegel L.M.: Evidence for siroheme-Fe4S4 interaction in spinach ferredoxin-sulfite reductase.–Biochemistry 21: 2905–2909, 1982b.PubMedGoogle Scholar
  74. Kurisu G., Kusunoki M., Katoh E. et al.: Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase.–Nat. Struct. Biol. 8: 117–121, 2001a.PubMedGoogle Scholar
  75. Kurisu G., Kusunoki M., Kimata-Ariga Y. et al.: Structure of the electron transfer complex between plant type ferredoxin and ferredoxin dependent assimilatory enzymes.–Protein Nucl. Acid Enzyme 46: 1661–1667, 2001b.Google Scholar
  76. Lehtimäki N., Lintala M., Allahverdiyeva Y. et al.: Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer–J. Plant Physiol. 167: 1018–1022, 2010.PubMedGoogle Scholar
  77. Lehtimäki N., Koskela M.M., Dahlstrom K.M. et al.: Posttranslational modifications of FERREDOXIN-NADP+ OXIDOREDUCTASE in Arabidopsis chloroplasts.–Plant Physiol. 166: 1764–1776, 2014.PubMedPubMedCentralGoogle Scholar
  78. Long H., Chang C.H., King P.W. et al.: Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii.–Biophys. J. 95: 3753–3766, 20PubMedPubMedCentralGoogle Scholar
  79. Long H., King P.W., Ghirardi M.L. et al.: Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association.–J. Phys. Chem. A 113: 4060–4067, 2009.PubMedGoogle Scholar
  80. Luque I., Flores E., Herrero A.: Molecular mechanism for the operation of nitrogen control in cyanobacteria.–EMBO J. 13: 2862–2869, 1994.PubMedPubMedCentralGoogle Scholar
  81. Manzano C., Candau P., Gomez-Moreno C. et al.: Ferredoxindependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans.–Mol. Cell Biochem. 10: 161–169, 19PubMedGoogle Scholar
  82. Marco P., Kozuleva M., Eilenberg H. et al.: Binding of ferredoxin to algal photosystem I involves a single binding site and is composed of two thermodynamically distinct events.–BBA-Bioenergetics 1859: 234–243, 2018.PubMedGoogle Scholar
  83. Matsuoka M., Kikuchi T.: Sequence analysis on the information of folding initiation segments in ferredoxin-like fold proteins.–BMC Struct. Biol. 14: 15, 2014.PubMedPubMedCentralGoogle Scholar
  84. Melis A., Zhang L., Forestier M. et al.: Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii.–Plant Physiol. 122: 127–136, 20PubMedPubMedCentralGoogle Scholar
  85. Melis A,. Happe T.: Hydrogen production. green algae as a source of energy.–Plant Physiol. 127: 740–748, 2001.PubMedPubMedCentralGoogle Scholar
  86. Mi H.L., Endo T., Ogawa T. et al.: Thylakoid membrane-bound, nadph-specific pyridine-nucleotide dehydrogenase complex mediates cyclic electron-transport in the cyanobacterium Synechocystis Sp Pcc-68038.–Plant Cell Physiol. 36: 661–668, 1995a.Google Scholar
  87. Mi H.L., Endo T., Ogawa T. et al.: Cyclic electron transport mediated by thylakoid-bound, NADPH-specific pyridine nucleotide dehydrogenase in cyanobacteria.–In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere, Vol. II. Pp. 871–874. Springer, Dordrecht 1995b.Google Scholar
  88. Mikami B., Ida S.: Spinach ferredoxin-nitrite reductase: characterization of catalytic activity and interaction of the enzyme with substrates.–J. Biochem. 105: 47–50, 1989.PubMedGoogle Scholar
  89. Moolna A., Bowsher C.G.: The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat.–J. Exp. Bot. 61: 2669–2681, 2010.PubMedPubMedCentralGoogle Scholar
  90. Morales R., Kachalova G., Vellieux F. et al.: Crystallographic studies of the interaction between the ferredoxin-NADP(+) reductase and ferredoxin from the cyanobacterium Anabaena: looking for the elusive ferredoxin molecule.–Acta Crystallogr. D 56: 1408–1412, 2000.PubMedGoogle Scholar
  91. Mortenson L.E., Valentine R.C., Carnahan J.E.: An electron transport factor from Clostridium pasteurianum.–Biochem. Biophys. Res. Co. 7: 448–452, 19Google Scholar
  92. Munekage Y., Hojo M., Meurer J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis.–Cell 110: 361–371, 20PubMedGoogle Scholar
  93. Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis.–Nature 429: 579–582, 2004.PubMedGoogle Scholar
  94. Nakayama M., Akashi T., Hase T.: Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin.–J. Inorg. Biochem. 82: 27–32, 2000.PubMedGoogle Scholar
  95. Nath K., O’Donnell J.P., Lu Y.: Chloroplastic iron-sulfur scaffold protein NFU3 is essential to overall plant fitness.–Plant Signal. Behav. 12: e1282023, 2017.PubMedPubMedCentralGoogle Scholar
  96. Neuwirth E.: RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColor Brewer, 2014.Google Scholar
  97. Ogawa T.: A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis Pcc6803.–P. Natl. Acad. Sci. USA 88: 4275–4279, 1991.Google Scholar
  98. Omairi-Nasser A., Galmozzi C. V., Latifi A. et al.: NtcA is responsible for accumulation of the small isoform of ferredoxin:NADP oxidoreductase.–Microbiology 160: 789–794, 2014.PubMedGoogle Scholar
  99. Privalle L.S., Privalle C.T., Leonardy N.J. et al.: Interactions between spinach ferredoxin-nitrite reductase and its substrates. Evidence for the specificity of ferredoxin.–J. Biol. Chem. 260: 14344–14350, 1985.PubMedGoogle Scholar
  100. R Core Team: R: A language and environment for statistical computing.–R Foundation for Statistical Computing, Vienna, Austria. 2013.Google Scholar
  101. R’zaigui M., Hatchikian E.C., Benlian D.: Redox reactions of the hydrogenase-cytochrome C3 system from Desulfovibrio gigas with the synthetic analogue of ferredoxin active site [Fe4S4 (SCH2-CH2OH)4]2–.–Biochem. Biophys. Res. Co. 92: 1258–1265, 19Google Scholar
  102. Rumpel S., Siebel J.F., Diallo M. et al.: Structural insight into the complex of ferredoxin and [FeFe] hydrogenase from Chlamydomonas reinhardtii.–Chembiochem. 16: 1663–1669, 20PubMedGoogle Scholar
  103. Saitoh T., Ikegami T., Nakayama M. et al: NMR study of the electron transfer complex of plant ferredoxin and sulfite reductase: mapping the interaction sites of ferredoxin.–J. Biol. Chem. 281: 10482–10488, 2006.PubMedGoogle Scholar
  104. Schmitz O., Kentemich T., Zimmer W. et al.: Identification of the nifJ gene coding for pyruvate: ferredoxin oxidoreductase in dinitrogen-fixing cyanobacteria.–Arch. Microbiol. 160: 62–67, 1993.PubMedGoogle Scholar
  105. Schmitz S., Böhme H.: Amino-acid-residues involved in functional interaction of vegetative cell ferredoxin from the cyanobacterium Anabaena Sp Pcc-7120 with ferredoxin-NADP reductase, nitrite reductase and nitrate reductase.–BBA-Bioenergetics 1231: 335–341, 1995.Google Scholar
  106. Sekine K., Sakakibara Y., Hase T. et al: A novel variant of ferredoxin-dependent sulfite reductase having preferred substrate specificity for nitrite in the unicellular red alga Cyanidioschyzon merolae.–Biochem. J. 423: 91–98, 2009.PubMedGoogle Scholar
  107. Setif P.: Ferredoxin and flavodoxin reduction by photosystem I.–BBA-Bioenergetics 1507: 161–179, 2001.PubMedGoogle Scholar
  108. Setya A., Murillo M., Leustek T.: Sulfate reduction in higher plants: Molecular evidence for a novel 5’-adenylylsulfate reductase.–P. Natl. Acad. Sci. USA 93: 13383–13388, 1996.Google Scholar
  109. Shahak Y., Crowther D. Hind G.: The involvement of ferredoxin-NADP+ reductase in cyclic electron transport in chloroplasts.–Biochim. Biophys. Acta 636: 234–243, 1981.PubMedGoogle Scholar
  110. Shrestha N.K., Kamachi T., Okura I.: Hydrogen evolution from glucose with the combination of glucose dehydrogenase, ferredoxin NADP reductase and hydrogenase from A. eutrophus H16.–React. Kinet. Catal. L. 70: 281–285, 2000.Google Scholar
  111. Sievers F., Wilm A., Dineen D. et al.: Fast, scalable generation of highquality protein multiple sequence alignments using Clustal Omega.–Mol. Syst. Biol. 7: 2011.Google Scholar
  112. Srivastava A.P., Allen J.P., Vaccaro B.J. et al.: Identification of amino acids at the catalytic site of a ferredoxin-dependent cyanobacterial nitrate reductase.–Biochemistry 54: 5557–5568, 2015.PubMedPubMedCentralGoogle Scholar
  113. Staples C.R., Ameyibor E., Fu W. et al.: The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters.–Biochemistry 35: 11425–11434, 1996.PubMedGoogle Scholar
  114. Suzuki A., Knaff D.B.: Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism.–Photosynth. Res. 83: 191–217, 2005.PubMedGoogle Scholar
  115. Swamy U., Wang M., Tripathy J.N. et al.: Structure of spinach nitrite reductase: implications for multi-electron reactions by the iron-sulfur:siroheme cofactor.–Biochemistry 44: 16054–16063, 2005.PubMedGoogle Scholar
  116. Tagawa K., Arnon D.I.: Ferredoxins as electron carriers in photosynthesis and in biological production and consumption of hydrogen gas.–Nature 195: 537–543, 1962.PubMedGoogle Scholar
  117. Talts E., Oja V., Ramma H. et al.: Dark inactivation of ferredoxin-NADP reductase and cyclic electron flow under farred light in sunflower leaves.–Photosynth. Res. 94: 109–120, 2007.PubMedGoogle Scholar
  118. Tano K., Schrauzer G.N.: Chemical evolution of a nitrogenase model. VIII. Ferredoxin model compounds as electron transfer catalysts and reducing agents in the simulation of nitrogenase and hydrogenase reactions.–J. Am. Chem. Soc. 97: 5404–5408, 1975.PubMedGoogle Scholar
  119. Tripathy J.N., Hirasawa M., Kim S.K. et al.: The role of tryptophan in the ferredoxin-dependent nitrite reductase of spinach.–Photosynth. Res. 94: 1–12, 2007.PubMedGoogle Scholar
  120. Tsukihira T., Fukuyama K., Nakamura M. et al.: X-ray analysis of a [2Fe-2S] ferrodoxin from Spirulina platensis. Main chain fold and location of side chains at 2.5 A resolution.–J. Biochem. 90: 1763–1773, 1981.PubMedGoogle Scholar
  121. Tsygankov A., Kosourov S., Seibert M. et al.: Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures.–Int. J. Hydrogen. Energ. 27: 1239–1244, 2002.Google Scholar
  122. van Hoewyk D., Abdel-Ghany S.E., Cohu C.M. et al.: Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS.–P. Natl. Acad. Sci. USA 104: 5686–5691, 2007.Google Scholar
  123. Vangone A., Spinelli R., Scarano V. et al.: COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes.–Bioinformatics 27: 2915–2916, 2011.PubMedGoogle Scholar
  124. Vangone A., Oliva R., Cavallo L.: CONS-COCOMAPS: a novel tool to measure and visualize the conservation of inter-residue contacts in multiple docking solutions.–BMC Bioinformatics 13: S19, 2012.PubMedPubMedCentralGoogle Scholar
  125. Voss I., Goss T., Murozuka E. et al.: FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I.–J. Biol. Chem. 286: 50–59, 2011.Google Scholar
  126. Vuorijoki L., Tiwari A., Kallio P. et al.: Inactivation of ironsulfur cluster biogenesis regulator SufR in Synechocystis sp. PCC 6803 induces unique iron-dependent protein-level responses.–Biochim. Biophys. Acta 1861: 1085–1098, 2017.PubMedGoogle Scholar
  127. Wei T., Simko V., Levy M et al.: Corrplot. R package "corrplot": Visualization of a Correlation Matrix (Version 0.82) (https://github.com/taiyun/corrplot), 2017.Google Scholar
  128. Whatley F.R., Allen M.B., Arnon D.I.: Photosynthetic phosphorylation as an anaerobic process.–Biochim. Biophys. Acta 16: 605–606, 1955.PubMedGoogle Scholar
  129. Yang C., Hu H., Ren H. et al: LIGHT-INDUCED RICE1 regulates light-dependent attachment of LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE to the thylakoid membrane in rice and Arabidopsis.–Plant Cell 28: 712–728, 2016.PubMedPubMedCentralGoogle Scholar
  130. Yang J., Xie X., Yang M. et al.: Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity.–P. Natl. Acad. Sci. USA 114: E2460–E2465, 2017.Google Scholar
  131. Ye J.Y., Wang Y.J.: The involvement of ferredoxin-NADP reductase in the photosynthetic cyclic electron transport.–Acta Biochim. Biophys. Sinica 29: 40–45, 1997.Google Scholar
  132. Yoneyama T., Fujimori T., Yanagisawa S. et al.: 15N tracing studies on in vitro reactions of ferredoxin-dependent nitrite reductase and glutamate synthase using reconstituted electron donation systems.–Plant Cell Physiol. 56: 1154–1161, 2015PubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, Cellular and Molecular BiologyUniversity of Tennessee at KnoxvilleKnoxvilleUSA
  2. 2.Graduate School of Genome Science and TechnologyUniversity of Tennessee at KnoxvilleKnoxvilleUSA

Personalised recommendations