Photosynthetica

, Volume 56, Issue 1, pp 322–333 | Cite as

Function, regulation and distribution of IsiA, a membrane-bound chlorophyll a-antenna protein in cyanobacteria

Review
  • 51 Downloads

Abstract

IsiA is a membrane-bound Chl a-antenna protein synthesized in cyanobacteria under iron deficiency. Since iron deficiency is a common nutrient stress in significant fractions of cyanobacterial habitats, IsiA is likely to be essential for some cyanobacteria. However, the role it plays in cyanobacteria is not fully understood. In this review paper, we summarize the research efforts directed towards characterizing IsiA over the past three decades and attempt to bring all the pieces of the puzzle together to get a more comprehensive understanding of the function of this protein. Moreover, we analyzed the genomes of over 390 cyanobacterial strains available in the JGI/IMG database to assess the distribution of IsiA across the cyanobacterial kingdom. Our study revealed that only 125 such strains have an IsiA homolog, suggesting that the presence of this protein is a niche specific requirement, and cyanobacterial strains that lack IsiA might have developed other mechanisms to survive iron deficiency.

Additional key words

environmental stress excitation energy transfer gene regulation photoprotection photosynthesis phylogenetic analysis 

Abbreviations

CBP

chlorophyll-binding proteins

Chl a

chlorophyll a

EET

excitation energy transfer

FMO

Fenna-Mathews-Olson protein

Fur

ferric uptake regulator

Fv/Fm

maximal photochemical efficiency of PSII

GFP

green fluorescent protein

Hilp

high light-inducible proteins

HNLC

high-nitrate low-chlorophyll

IR

inverted repeat

IsiA

iron-stress-induced protein A

IsiB

iron-stress-induced protein B

IdiA

iron-deficiency-induced protein A

IdiB

iron-deficiency-induced protein B

IsrR

iron stress-repressed RNA

NPQ

nonphotochemical quenching

PBS

phycobilisome

Pcb

prochlorophyte chlorophyll a/b protein

PerR

peroxide operon regulator

ROS

reactive oxygen species

σPSI

effective cross-section of the photosynthetic reaction center PSI

UCYN-A

noncultivated unicellular cyanobacteria of group A

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrizhiyevskaya E.G., Frolov D., van Grondelle R. et al.: Energy transfer and trapping in the Photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA.–BBA-Bioenergetics 1656: 104–113, 2004.CrossRefPubMedGoogle Scholar
  2. Andrizhiyevskaya E.G., Schwabe T.M., Germano M. et al.: Spectroscopic properties of PSI-IsiA supercomplexes from the cyanobacterium Synechococcus PCC 7942.–BBA-Bioenergetics 1556: 265–272, 2002.CrossRefPubMedGoogle Scholar
  3. Ardelean I., Matthijs H.C., Havaux M. et al.: Unexpected changes in photosystem I function in a cytochrome c6-deficient mutant of the cyanobacterium Synechocystis PCC 6803.–FEMS Microbiol. Lett. 213: 113–119, 2002.CrossRefPubMedGoogle Scholar
  4. Bailey S., Mann N.H., Robinson C. et al.: The occurrence of rapidly reversible non-photochemical quenching of chlorophyll a fluorescence in cyanobacteria.–FEBS Lett. 579: 275–280, 2005.CrossRefPubMedGoogle Scholar
  5. Bandyopadhyay A., Elvitigala T., Welsh E. et al.: Novel metabolic attributes of the genus Cyanothece, comprising a group of unicellular nitrogen-fixing cyanobacteria.–MBio. 2: e00214–00211, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barber J., Morris E., Büchel C.: Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47.–BBA-Bioenergetics 1459: 239–247, 2000.CrossRefPubMedGoogle Scholar
  7. Behrenfeld M.J., Worthington K., Sherrell R. M. et al.: Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics.–Nature 442: 1025–1028, 2006.CrossRefPubMedGoogle Scholar
  8. Berera R., van Stokkum I.H., d’Haene S. et al: A mechanism of energy dissipation in cyanobacteria.–Biophys. J. 96: 2261–2267, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berera R., van Stokkum I.H., Kennis J. T. et al.: The lightharvesting function of carotenoids in the cyanobacterial stressinducible IsiA complex.–Chem. Phys. 373: 65–70, 2010.CrossRefGoogle Scholar
  10. Bibby T.S., Nield J., Barber J.: Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria.–Nature 412: 743–745, 2001a.CrossRefPubMedGoogle Scholar
  11. Bibby T.S., Nield J., Barber J.: Three-dimensional model and characterization of the iron stress-induced CP43’-photosystem I supercomplex isolated from the cyanobacterium Synechocystis PCC 6803.–J. Biol. Chem. 276: 43246–43252, 2001b.CrossRefPubMedGoogle Scholar
  12. Bibby T.S., Zhang Y., Chen M.: Biogeography of photosynthetic light-harvesting genes in marine phytoplankton.–PLoS ONE 4: e4601, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boekema E.J., Hifney A., Yakushevska A.E. et al: A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria.–Nature 412: 745–748, 2001.CrossRefPubMedGoogle Scholar
  14. Burnap R.L., Troyan T., Sherman L.A.: The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43) is encoded by the isiA gene.–Plant Physiol. 103: 893–902, 1993.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cadoret J. C., Demoulière R., Lavaud J. et al.: Dissipation of excess energy triggered by blue light in cyanobacteria with CP43’ (isiA).–BBA-Bioenergetics 1659: 100–104, 2004.CrossRefPubMedGoogle Scholar
  16. Chauhan D., Folea I.M., Jolley C.C. et al: A novel photosynthetic strategy for adaptation to low-iron aquatic environments.–Biochemistry 50: 686–692, 2011.CrossRefPubMedGoogle Scholar
  17. Chen H.S., Liberton M., Pakrasi H.B. et al.: Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria.–BBA-Bioenergetics 1858: 249–258, 2017.CrossRefPubMedGoogle Scholar
  18. Coale K.H., Johnson K.S., Fitzwater S.E. et al: A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean.–Nature 383: 495–501, 1996.CrossRefPubMedGoogle Scholar
  19. Daddy S., Zhan J., Jantaro S. et al: A novel high light-inducible carotenoid-binding protein complex in the thylakoid membranes of Synechocystis PCC 6803.–Sci. Rep. 5: 9480, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Donia M.S., Fricke W.F., Partensky F. et al.: Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis.–P. Natl. Acad. Sci. USA 108: E1423–E1432, 2011.CrossRefGoogle Scholar
  21. Duhring U., Axmann I.M., Hess W.R. et al.: An internal antisense RNA regulates expression of the photosynthesis gene isiA.–P. Natl. Acad. Sci. USA 103: 7054–7058, 2006.CrossRefGoogle Scholar
  22. Falk S., Samson G., Bruce D. et al.: Functional analysis of the iron-stress induced CP 43’ polypeptide of PS II in the cyanobacterium Synechococcus sp. PCC 7942.–Photosynth. Res. 45: 51–60, 1995.CrossRefPubMedGoogle Scholar
  23. Felsenstein J.: Confidence-limits on phylogenies–an approach using the bootstrap.–Evolution 39: 783–791, 1985.CrossRefPubMedGoogle Scholar
  24. Feng X., Neupane B., Acharya K. et al.: Spectroscopic study of the CP43’ complex and the PSI-CP43’ supercomplex of the cyanobacterium Synechocystis PCC 6803.–J. Phys. Chem. B 115: 13339–13349, 2011.CrossRefPubMedGoogle Scholar
  25. Ferreira K.N., Iverson T.M., Maghlaoui K. et al.: Architecture of the photosynthetic oxygen-evolving center.–Science 303: 1831–1838, 2004.CrossRefPubMedGoogle Scholar
  26. Fitzgerald M.P., Husain A., Hutber G.N. et al.: Studies on the flavodoxins from a cyanobacterium and a red alga.–Biochem. Soc. T. 5: 1505–1506, 1977.CrossRefGoogle Scholar
  27. Foster J.S., Singh A.K., Rothschild L.J. et al.: Growth-phase dependent differential gene expression in Synechocystis sp. strain PCC 6803 and regulation by a group 2 sigma factor.–Arch. Microbiol. 187: 265–279, 2007.CrossRefPubMedGoogle Scholar
  28. Fraser J.M., Tulk S.E., Jeans J.A. et al.: Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942.–PLoS ONE 8: e59861, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Geiss U., Vinnemeier J., Kunert A. et al.: Detection of the isiA gene across cyanobacterial strains: Potential for probing iron deficiency.–Appl. Environ. Microbiol. 67: 5247–5253, 2001a.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Geiss U., Vinnemeier J., Schoor A. et al.: The iron-regulated isiA gene of Fischerella muscicola strain PCC 73103 is linked to a likewise regulated gene encoding a Pcb-like chlorophyllbinding protein.–FEMS Microbiol. Lett. 197: 123–129, 2001b.CrossRefPubMedGoogle Scholar
  31. Ghassemian M., Straus N.A.: Fur regulates the expression of iron-stress genes in the cyanobacterium Synechococcus sp. strain PCC 7942.–Microbiology 142: 1469–1476, 1996.CrossRefPubMedGoogle Scholar
  32. Guikema J.A.: Fluorescence induction characteristics of Anacystis nidulans during recovery from iron-deficiency.–J. Plant Nutr. 8: 891–908, 1985.CrossRefGoogle Scholar
  33. Guikema J.A., Sherman L.A.: Chlorophyll-protein organization of membranes from the cyanobacterium Anacystis nidulans.–Arch. Biochem. Biophys. 220: 155–166, 198CrossRefPubMedGoogle Scholar
  34. Guikema J.A., Sherman L.A.: Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation.–Plant Physiol. 73: 250–256, 1983b.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Guikema J.A., Sherman L.A.: Influence of iron deprivation on the membrane composition of Anacystis nidulans.–Plant Physiol. 74: 90–95, 19CrossRefPubMedPubMedCentralGoogle Scholar
  36. Havaux M., Guedeney G., Hagemann M. et al.: The chlorophyllbinding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress.–FEBS Lett. 579: 2289–2293, 2005.CrossRefPubMedGoogle Scholar
  37. Holland H.D.: The oxygenation of the atmosphere and oceans.–Philos. T. Roy. Soc. B 361: 903–915, 2006.CrossRefGoogle Scholar
  38. Ihalainen J.A., D’Haene S., Yeremenko N. et al.: Aggregates of the chlorophyll-binding protein IsiA (CP43’) dissipate energy in cyanobacteria.–Biochemistry 44: 10846–10853, 2005.CrossRefPubMedGoogle Scholar
  39. Jeanjean R., Zuther E., Yeremenko N. et al: A photosystem I psaFJ-null mutant of the cyanobacterium Synechocystis PCC 6803 expresses the isiAB operon under iron replete conditions.–FEBS Lett. 549: 52–56, 2003.CrossRefPubMedGoogle Scholar
  40. Jordan P., Fromme P., Witt H.T. et al.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution.–Nature 411: 909–917, 2001.CrossRefPubMedGoogle Scholar
  41. Karapetyan N.V.: Non-photochemical quenching of fluorescence in cyanobacteria.–Biochemistry 72: 1127–1135, 2007.PubMedGoogle Scholar
  42. Komenda J., Sobotka R.: Cyanobacterial high-light-inducible proteins–Protectors of chlorophyll-protein synthesis and assembly.–BBA-Bioenergetics 1857: 288–295, 2016.CrossRefPubMedGoogle Scholar
  43. Kouril R., Arteni A.A., Lax J. et al.: Structure and functional role of supercomplexes of IsiA and Photosystem I in cyanobacterial photosynthesis.–FEBS Lett. 579: 3253–3257, 2005.CrossRefPubMedGoogle Scholar
  44. Krishnamurthy A., Moore J.K., Mahowald N. et al.: Impacts of atmospheric nutrient inputs on marine biogeochemistry.–J. Geophys. Res. Biogeosci. 115: 1–14, 2010.CrossRefGoogle Scholar
  45. Kunert A., Vinnemeier J., Erdmann N. et al.: Repression by Fur is not the main mechanism controlling the iron-inducible isiAB operon in the cyanobacterium Synechocystis sp. PCC 6803.–FEMS Microbiol. Lett. 227: 255–262, 2003.CrossRefPubMedGoogle Scholar
  46. Kutzki C., Masepohl B., Bohme H.: The isiB gene encoding flavodoxin is not essential for photoautotrophic iron limited growth of the cyanobacterium Synechocystis sp. strain PCC 6803.–FEMS Microbiol. Lett. 160: 231–235, 1998.CrossRefPubMedGoogle Scholar
  47. La Roche J., van der Staay G. W., Partensky F. et al.: Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins.–P. Natl. Acad. Sci. USA 93: 15244–15248, 1996.CrossRefGoogle Scholar
  48. Laudenbach D., Reith M., Straus N.: Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2.–J. Bacteriol. 170: 258–265, 1988.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Laudenbach D.E., Straus N.A.: Characterization of a cyanobacterial iron stress-induced gene similar to psbC.–J. Bacteriol. 170: 5018–5026, 1988.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Leonhardt K., Straus N.A.: An iron stress operon involved in photosynthetic electron transport in the marine cyanobacterium Synechococcus sp. PCC 7002.–J. Gen. Microbiol. 8: 1613–1621, 1992.CrossRefGoogle Scholar
  51. Leonhardt K., Straus N.A.: Photosystem II genes isiA, psbDI and psbC in Anabaena sp. PCC 7120: cloning, sequencing and the transcriptional regulation in iron-stressed and iron-repleted cells.–Plant Mol. Biol. 24: 63–73, 1994.CrossRefPubMedGoogle Scholar
  52. Li H., Singh A.K., McIntyre L.M. et al.: Differential gene expression in response to hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803.–J. Bacteriol. 186: 3331–3345, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ma F., Zhang X., Zhu X. et al.: Dynamic changes of IsiAcontaining complexes during long-term iron deficiency in Synechocystis sp. PCC 6803.–Mol. Plant 10: 143–154, 2017.CrossRefPubMedGoogle Scholar
  54. Martin J.H., Fitzwater S.E.: Iron-deficiency limits phytoplankton growth in the Northeast Pacific subarctic.–Nature 331: 341–343, 1988.CrossRefGoogle Scholar
  55. Melkozernov A.N., Bibby T.S., Lin S. et al.: Time-resolved absorption and emission show that the CP43’ antenna ring of iron-stressed Synechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core.–Biochemistry 42: 3893–3903, 2003.CrossRefPubMedGoogle Scholar
  56. Michel K.P., Pistorius E.K.: Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: The function of IdiA and IsiA.–Physiol. Plantarum 120: 36–50, 2004.CrossRefGoogle Scholar
  57. Michel K.P., Thole H.H., Pistorius E.K.: IdiA, a 34 kDa protein in the cyanobacteria Synechococcus sp. strains PCC 6301 and PCC 7942, is required for growth under iron and manganese limitations.–Microbiology 142: 2635–2645, 1996.CrossRefPubMedGoogle Scholar
  58. Moore C.M., Mills M.M., Arrigo K.R. et al.: Processes and patterns of oceanic nutrient limitation.–Nat. Geosci. 6: 701–710, 2013.CrossRefGoogle Scholar
  59. Niedzwiedzki D.M., Tronina T., Liu H. et al.: Carotenoidinduced non-photochemical quenching in the cyanobacterial chlorophyll synthase-HliC/D complex.–BBA-Bioenergetics 1857: 1430–1439, 2016.CrossRefPubMedGoogle Scholar
  60. Nield J., Morris E.P., Bibby T.S. et al.: Structural analysis of the photosystem I supercomplex of cyanobacteria induced by iron deficiency.–Biochemistry 42: 3180–3188, 2003.CrossRefPubMedGoogle Scholar
  61. North R., Guildford S., Smith R. et al.: Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie.–Limnol. Oceanogr. 52: 315–328, 2007.CrossRefGoogle Scholar
  62. Öquist G.: Changes in pigment composition and photosynthesis induced by iron-deficiency in blue-green-alga Anacystis nidulans.–Physiol. Plantarum 25: 188–191, 19CrossRefGoogle Scholar
  63. Orf G.S., Saer R.G., Niedzwiedzki D.M. et al.: Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex.–P. Natl. Acad. Sci. USA 113: E4486–E4493, 2016.CrossRefGoogle Scholar
  64. Pakrasi H.B., Goldenberg A., Sherman L.A.: Membrane development in the cyanobacterium, Anacystis nidulans, during recovery from iron starvation.–Plant Physiol. 79: 290–295, 1985a.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pakrasi H.B., Riethman H.C., Sherman L.A.: Organization of pigment proteins in the photosystem II complex of the cyanobacterium Anacystis nidulans R2.–P. Natl. Acad. Sci. USA 82: 6903–6907, 1985b.CrossRefGoogle Scholar
  66. Park Y.I., Sandström S., Gustafsson P. et al.: Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting photosystem II from excess light under iron limitation.–Mol. Microbiol. 32: 123–129, 1999.CrossRefPubMedGoogle Scholar
  67. Reppert M., Zazubovich V., Dang N.C. et al.: Low-energy chlorophyll states in the CP43 antenna protein complex: simulation of various optical spectra. II.–J. Phys. Chem. B 112: 9934–9947, 2008.CrossRefPubMedGoogle Scholar
  68. Richier S., Macey A.I., Pratt N.J. et al.: Abundances of ironbinding photosynthetic and nitrogen-fixing proteins of Trichodesmium both in culture and in situ from the North Atlantic.–PLoS ONE 7: e35571, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Riethman H.C., Sherman L.A.: Purification and characterization of an iron stress-induced chlorophyll-protein from the cyanobacterium Anacystis nidulans R2.–BBA-Bioenergetics 935: 141–151, 1988.CrossRefPubMedGoogle Scholar
  70. Riley K.J., Zazubovich V., Jankowiak R.: Frequency-domain spectroscopic study of the PS I-CP43’ supercomplex from the cyanobacterium Synechocystis PCC 6803 grown under iron stress conditions.–J. Phys. Chem. B 110: 22436–22446, 2006.CrossRefPubMedGoogle Scholar
  71. Ruban A.V., Berera R., Ilioaia C. et al.: Identification of a mechanism of photoprotective energy dissipation in higher plants.–Nature 450: 575–578, 2007.CrossRefPubMedGoogle Scholar
  72. Ryan-Keogh T.J., Macey A.I., Cockshutt A.M. et al.: The cyanobacterial chlorophyll-binding-protein IsiA acts to increase the in vivo rffective absorption cross-section of PSI under iron limitation.–J. Phycol. 48: 145–154, 2012.CrossRefPubMedGoogle Scholar
  73. Saitou N., Nei M.: The neighbor-joining method–a new method for reconstructing phylogenetic trees.–Mol. Biol. Evol. 4: 406–425, 1987.PubMedGoogle Scholar
  74. Salomon E., Keren N.: Acclimation to environmentally relevant Mn concentrations rescues a cyanobacterium from the detrimental effects of iron limitation.–Environ. Microbiol. 17: 2090–2098, 2015.CrossRefPubMedGoogle Scholar
  75. Sandrini G., Tann R.P., Schuurmans J.M. et al.: Diel variation in gene expression of the CO2-concentrating mechanism during a harmful cyanobacterial bloom.–Front. Microbiol. 7: 551, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sandström S., Park Y.I., Öquist G. et al.: CP43’, the isiA gene product, functions as an excitation energy dissipator in the 333 cyanobacterium Synechococcus sp PCC 7942.–Photochem. Photobiol. 74: 431–437, 2001.CrossRefPubMedGoogle Scholar
  77. Sarcina M., Mullineaux C.W.: Mobility of the IsiA chlorophyllbinding protein in cyanobacterial thylakoid membranes.–J. Biol. Chem. 279: 36514–36518, 2004.CrossRefPubMedGoogle Scholar
  78. Schrader P.S., Milligan A.J., Behrenfeld M.J.: Surplus photosynthetic antennae complexes underlie diagnostics of iron limitation in a cyanobacterium.–PLoS ONE 6: e18753, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sherman D.M., Sherman L.A.: Effect of iron-deficiency and iron restoration on ultrastructure of Anacystis nidulans.–J. Bacteriol. 156: 393–401, 1983.PubMedPubMedCentralGoogle Scholar
  80. Shih P.M., Wu D., Latifi A. et al.: Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing.–P. Natl. Acad. Sci. USA 110: 1053–1058, 2013.CrossRefGoogle Scholar
  81. Singh A.K., Sherman L.A.: Iron-independent dynamics of IsiA production during the transition to stationary phase in the cyanobacterium Synechocystis sp. PCC 6803.–FEMS Microbiol. Lett. 256: 159–164, 2006.CrossRefPubMedGoogle Scholar
  82. Stojiljkovic I., Hantke K.: Functional domains of the Escherichia coli ferric uptake regulator protein (Fur).–Mol. Gen. Genet 247: 199–205, 1995.CrossRefPubMedGoogle Scholar
  83. Sun J., Golbeck J.H.: The presence of the IsiA-PSI supercomplex leads to enhanced photosystem I electron throughput in ironstarved cells of Synechococcus sp. PCC 7002.–J. Phys. Chem. B 119: 13549–13559, 2015.CrossRefPubMedGoogle Scholar
  84. Tsuda A., Takeda S., Saito H. et al: A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom.–Science 300: 958–961, 2003.CrossRefPubMedGoogle Scholar
  85. Turner S., Huang T.-C., Chaw S.-M.: Molecular phylogeny of nitrogen-fixing unicellular cyanobacteria.–Bot. Bull. Acad. Sinica 42: 2001.Google Scholar
  86. Umena Y., Kawakami K., Shen J.R. et al.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A.–Nature 473: 55–60, 2011.CrossRefPubMedGoogle Scholar
  87. van der Weij-de Wit C. D., Ihalainen J. A., van de Vijver E. et al.: Fluorescence quenching of IsiA in early stage of iron deficiency and at cryogenic temperatures.–Biochim. Biophys. Acta 1767: 1393–1400, 2007.CrossRefPubMedGoogle Scholar
  88. Vinnemeier J., Kunert A., Hagemann M.: Transcriptional analysis of the isiAB operon in salt-stressed cells of the cyanobacterium Synechocystis sp. PCC 6803.–FEMS Microbiol. Lett. 169: 323–330, 1998.CrossRefPubMedGoogle Scholar
  89. Vrede T., Tranvik L.J.: Iron constraints on planktonic primary production in oligotrophic lakes.–Ecosystems 9: 1094–1105, 2006.CrossRefGoogle Scholar
  90. Wang Q., Hall C.L., Al-Adami M.Z. et al.: IsiA is required for the formation of photosystem I supercomplexes and for efficient state transition in Synechocystis PCC 6803.–PLoS ONE 5: e10432, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang Q., Jantaro S., Lu B.S. et al.: The high light-inducible polypeptides stabilize trimeric photosystem I complex under high light conditions in Synechocystis PCC 6803.–Plant Physiol. 147: 1239–1250, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wilson A., Ajlani G., Verbavatz J.M. et al: A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria.–Plant Cell 18: 992–1007, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yeremenko N., Kouril R., Ihalainen J. A. et al.: Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria.–Biochemistry 43: 10308–10313, 2004.CrossRefPubMedGoogle Scholar
  94. Yousef N., Pistorius E.K., Michel K.P.: Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild-type and selected mutants.–Arch. Microbiol. 180: 471–483, 2003.CrossRefPubMedGoogle Scholar
  95. Zehr J.P., Bench S.R., Carter B.J. et al.: Globally distributed uncultivated oceanic N2-Fixing cyanobacteria lack oxygenic Photosystem II.–Science 322: 1110–1112, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • H.-Y.S. Chen
    • 1
  • A. Bandyopadhyay
    • 2
  • H. B. Pakrasi
    • 1
    • 2
  1. 1.Department of Energy, Environmental, and Chemical EngineeringWashington UniversitySt. LouisUSA
  2. 2.Department of BiologyWashington UniversitySt. LouisUSA

Personalised recommendations