Philosophical Studies

, Volume 176, Issue 3, pp 827–837 | Cite as

Re-doing the math: making enactivism add up

  • Daniel D. HuttoEmail author


Mathematical cognition is widely regarded as the epitome of the kind of cognition that systematically eludes enactivist treatment. It is the parade example of abstract, disembodied cognition if ever there was one. As it is such an important test case, this paper focuses squarely on what Gallagher has to say about mathematical cognition in Enactivist Interventions. Gallagher explores a number of possible theories that he holds could provide useful fodder for developing an adequate enactivist account of mathematical cognition. Yet if the analyses of this paper prove sound, then some of the central approaches he considers are simply not fit for such service. That said, in the final analysis, if crucial additions and subtractions are made, there is a real chance of fashioning a promising enactivist account of mathematical cognition.


Enactivism Enculturation Mathematical cognition Embodied metaphor Neural re-use Mathematical realism 



  1. Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  2. Dehaene, S. (1997). The number sense: How the mind creates mathematics. London: Penguin.Google Scholar
  3. Dehaene, S. (2004). Evolution of human cortical circuits for reading and arithmetic: The ‘neuronal recycling’ hypothesis. In S. Dehaene, J. R. Duhamel, M. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain (pp. 133–157). Cambridge, MA: MIT Press.Google Scholar
  4. Dehaene, S. (2009). Reading in the brain: The new science of how we read. New York: Penguin.Google Scholar
  5. Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398. Scholar
  6. Gallagher, S. (2017). Enactivist interventions: Rethinking the mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
  7. Hutto, D. D., Kirchhoff, M. D., & Abrahamson, D. (2015). The enactive roots of STEM: Rethinking educational design in mathematics. Educational Psychology Review, 27(3), 371–389.CrossRefGoogle Scholar
  8. Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content. Cambridge, MA: MIT Press.Google Scholar
  9. Hutto, D. D., & Myin, E. (2017). Evolving enactivism: Basic minds meet content. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  10. Hutto, D. D., Peeters, A., & Segundo-Ortin, M. (2017). Cognitive ontology in flux: The possibility of protean brains. Philosophical Explorations, 20(2), 209–223.CrossRefGoogle Scholar
  11. Jones, M. (2018). Numerals and neural reuse. Synthese. Scholar
  12. Lakoff, G., & Núñez, R. (2000). Where mathematics comes from. New York: Basic Books.Google Scholar
  13. Menary, R. (2015). Mathematical cognition: A case of enculturation. In T. Metzinger & J. M. Windt (Eds.), Open MIND (Vol. 25, pp. 1–20). Frankfurt am Main: MIND Group. Scholar
  14. Menary, R. (2018). Cognitive integration how culture transforms us and extends our cognitive capabilities. In S. Gallagher, A. Albert Newen, & L. De Bruin (Eds.), Oxford handbook of 4E cognition (pp. 187–215). Oxford: Oxford University Press.Google Scholar
  15. Zahidi, K., & Myin, E. (2016). Radically enactive numerical cognition. In G. Etzelmüller & C. Christian Tewes (Eds.), Embodiment in evolution and culture. Mohr Siebeck: Tübingen.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Humanities and Social Inquiry, Faculty of Law, Humanities and the ArtsUniversity of WollongongWollongongAustralia

Personalised recommendations