Advertisement

International Journal of Clinical Pharmacy

, Volume 40, Issue 6, pp 1539–1547 | Cite as

Evaluation of the effect of acetazolamide versus mannitol on cisplatin-induced nephrotoxicity, a pilot study

  • Manal El Hamamsy
  • Noha KamalEmail author
  • Naglaa Samir Bazan
  • Mostafa El Haddad
Research Article

Abstract

Background Cisplatin-induced nephrotoxicity still occurs despite the intensive hydration approach adapted to prevent its occurrence. Objective Evaluation of the effect of acetazolamide (ACTZ) on minimizing cisplatin-induced nephrotoxicity compared to mannitol when added to hydration regimen. Setting Nasser Institute Cancer Center (NICC), Cairo, Egypt. Method A total of 35 patients planned to receive cisplatin were divided into two groups: 20 patients received mannitol and 15 patients received ACTZ. Both groups received standard hydration measures as well for prevention of cisplatin-induced nephrotoxicity. Main outcome measure Patients’ kidney function was assessed using serum creatinine, creatinine clearance and blood urea nitrogen. Kidney injury was assessed using RIFLE criteria. Patients’ liver function tests and hematological parameters were also monitored. Results Patients in the mannitol group showed higher risk of developing kidney injury (30%) whereas those in the ACTZ group showed lower risk (8.9%), relative risk (RR) 0.269, 95% CI 0.108–0.815. No statistically significant difference occurred between the two groups concerning liver function tests or hematological parameters. Conclusion Use of ACTZ in addition to intensive hydration may have more beneficial effect on minimizing cisplatin-induced nephrotoxicity compared to mannitol plus intensive hydration approach. A large multicenter randomized clinical trials is recommended to confirm study results and to assess effect of ACTZ on tumor response.

Keywords

Acetazolamide Cisplatin Kidney function Mannitol Nephrotoxicity Platinum 

Notes

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

Funding

None.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010;2(11):2490–518.CrossRefGoogle Scholar
  2. 2.
    Hartmann JT, Fels LM, Knop S, Stolt H, Kanz L, Bokemeyer C. A randomized trial comparing the nephrotoxicity of cisplatin/ifosfamide-based combination chemotherapy with or without amifostine in patients with solid tumors. Invest New Drugs. 2000;18(3):281–9.CrossRefGoogle Scholar
  3. 3.
    Thomas Hartmann J, Lipp H-P. Toxicity of platinum compounds. Exp Opin Pharmacother. 2003;4(6):889–901.CrossRefGoogle Scholar
  4. 4.
    Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115–24.CrossRefGoogle Scholar
  5. 5.
    Sastry J, Kellie SJ. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol. 2005;22(5):441–5.CrossRefGoogle Scholar
  6. 6.
    Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396–402.CrossRefGoogle Scholar
  7. 7.
    Shiraishi F, Curtis LM, Truong L, Poss K, Visner GA, Madsen K, et al. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am J Physiol Renal Physiol. 2000;278(5):F726–36.CrossRefGoogle Scholar
  8. 8.
    Portilla D, Safar AM, Shannon ML, Penson RT. Cisplatin nephrotoxicity Uptodate (2015).Google Scholar
  9. 9.
    Cvitkovic E, Spaulding J, Bethune V, Martin J, Whitmore WF. Improvement of cis-dichlorodiammineplatinum (NSC 119875): therapeutic index in an animal model. Cancer. 1977;39(4):1357–61.CrossRefGoogle Scholar
  10. 10.
    Kidera Y, Kawakami H, Sakiyama T, Okamoto K, Tanaka K, Takeda M, et al. Risk factors for cisplatin-induced nephrotoxicity and potential of magnesium supplementation for renal protection. PLoS ONE. 2014;9(7):e101902.CrossRefGoogle Scholar
  11. 11.
    Moon HH, Seo KW, Yoon KY, Shin YM, Choi KH, Lee SH. Prediction of nephrotoxicity induced by cisplatin combination chemotherapy in gastric cancer patients. World J Gastroenterol. 2011;17(30):3510–7.CrossRefGoogle Scholar
  12. 12.
    Sato K, Watanabe S, Ohtsubo A, Shoji S, Ishikawa D, Tanaka T, et al. Nephrotoxicity of cisplatin combination chemotherapy in thoracic malignancy patients with CKD risk factors. BMC Cancer. 2016;16:222.CrossRefGoogle Scholar
  13. 13.
    De Jongh FE, Van Veen RN, Veltman SJ, De Wit R, Van der Burg ME, Van den Bent MJ, et al. Weekly high-dose cisplatin is a feasible treatment option: analysis on prognostic factors for toxicity in 400 patients. Br J Cancer. 2003;88(8):1199–206.CrossRefGoogle Scholar
  14. 14.
    Faig J, Haughton M, Taylor RC, D’Agostino RB, Whelen MJ, Porosnicu Rodriguez KA, et al. Retrospective analysis of cisplatin nephrotoxicity in patients with head and neck cancer receiving outpatient treatment with concurrent high-dose cisplatin and radiotherapy. Am J Clin Oncol. 2016;41(5):432–40.CrossRefGoogle Scholar
  15. 15.
    Morgan KP, Buie LW, Savage SW. The Role of Mannitol as a Nephroprotectant in Patients Receiving Cisplatin Therapy. Ann Pharmacother. 2012;46(2):276–81.CrossRefGoogle Scholar
  16. 16.
    Hayati F, Hossainzadeh M, Shayanpour S, Abedi-Gheshlaghi Z, Beladi Mousavi SS. Prevention of cisplatin nephrotoxicity. J Nephropharmacol. 2016;5(1):57–60.PubMedGoogle Scholar
  17. 17.
    Block KI, Gyllenhaal C. Commentary: the pharmacological antioxidant amifostine—implications of recent research for integrative cancer care. Integr Cancer Therapies. 2005;4(4):329–51.CrossRefGoogle Scholar
  18. 18.
    Gopalakrishnan R, Murugesan A, Babu E, Sakthisekaran D. Protective role of vitamin E and acetazolamide in cisplatin-induced changes in lipid peroxidation and antioxidant enzyme levels in albino rats. J Clin Biochem Nutr. 1996;20(3):203–10.CrossRefGoogle Scholar
  19. 19.
    Heidemann H, Gerkens J, Jackson E, Branch R. Attenuation of cisplatinum-induced nephrotoxicity in the rat by high salt diet, furosemide and acetazolamide. Naunyn-Schmiedeberg’s Arch Pharmacol. 1985;329(2):201–5.CrossRefGoogle Scholar
  20. 20.
    Heidemann HT, Gjessing L, Brune KH, Ohnhaus EE. The effect of acetazolamide and furosemide on lithium clearance and cisplatin nephrotoxicity in the rat. In: Bach PH, Lock EA, editors. Nephrotoxicity. Springer: US; 1989. p. 367–70.CrossRefGoogle Scholar
  21. 21.
    Cockcroft D, Gault M. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefGoogle Scholar
  22. 22.
    Bauer L. In: McGraw H, editor. Applied clinical pharmacokinetics. New York: Edical Publishing Division; 2001. p. 93–179.Google Scholar
  23. 23.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care. 2004;8(4):R204–12.CrossRefGoogle Scholar
  24. 24.
    Aronoff G, Bennett W, Berns J, Brier M, Kasbekar N, Mueller B, et al. Drug prescribing in renal failure dosing guidelines for adults and children. 5th ed. Philadelphia: American College of Physicians; 2007.Google Scholar
  25. 25.
    Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer. 1998;34(10):1522–34.CrossRefGoogle Scholar
  26. 26.
    Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:17.CrossRefGoogle Scholar
  27. 27.
    Prasaja Y, Sutandyo N, Andrajati R. Incidence of cisplatin-induced nephrotoxicity and associated factors among cancer patients in Indonesia. Asian Pac J Cancer Prev APJCP. 2015;16(3):1117–22.CrossRefGoogle Scholar
  28. 28.
    Osman NM, Copley MP, Litterst CL. Effects of the diuretics mannitol or acetazolamide on nephrotoxicity and physiological disposition of cisplatin in rats. Cancer Chemother Pharmacol. 1984;13(1):58–62.CrossRefGoogle Scholar
  29. 29.
    Heidemann HT, Hoffmann K, Inselmann G. Long-term effects of acetazolamide and sodium chloride loading on cisplatin nephrotoxicity in the rat. Eur J Clin Invest. 1990;20(2):214–8.CrossRefGoogle Scholar
  30. 30.
    Osman N, Copley M, Litterst C. Amelioration of cisplatin-induced nephrotoxicity by the diuretic acetazolamide in F344 rats. Cancer Treat Rep. 1983;68(7–8):999–1004.Google Scholar
  31. 31.
    Santoso JT, Lucci JA, Coleman RL, Schafer I, Hannigan E. Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol. 2003;52(1):13–8.CrossRefGoogle Scholar
  32. 32.
    Pingle SC, Mishra S, Marcuzzi A, Bhat SG, Sekino Y, Rybak LP, et al. Osmotic diuretics induce adenosine A1 receptor expression and protect renal proximal tubular epithelial cells against cisplatin-mediated apoptosis. J Biol Chem. 2004;279(41):43157–67.CrossRefGoogle Scholar
  33. 33.
    Morgan KP, Snavely AC, Wind LS, Buie LW, Grilley-Olson J, Walko CM, et al. Rates of renal toxicity in cancer patients receiving cisplatin with and without mannitol. Ann Pharmacother. 2014;48(7):863–9.CrossRefGoogle Scholar
  34. 34.
    Muraki K, Koyama R, Honma Y, Yagishita S, Shukuya T, Ohashi R, et al. Hydration with magnesium and mannitol without furosemide prevents the nephrotoxicity induced by cisplatin and pemetrexed in patients with advanced non-small cell lung cancer. J Thorac Dis. 2012;4(6):562–8.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Al-Sarraf M, Fletcher W, Oishi N, Pugh R, Hewlett JS, Balducci L, et al. Cisplatin hydration with and without mannitol diuresis in refractory disseminated malignant melanoma: a southwest oncology group study. Cancer Treat Rep. 1982;66(1):31–5.PubMedGoogle Scholar
  36. 36.
    Lehane D, Winston A, Gray R, Daskal Y. The effect of diuretic pre-treatment on clinical, morphological and ultrastructural cis-platinum induced nephrotoxicity. Int J Radiat Oncol Biol Phys. 1979;5(8):1393–9.CrossRefGoogle Scholar
  37. 37.
    Ostrow S, Egorin MJ, Hahn D, Markus S, Aisner J, Chang P, et al. High-dose cisplatin therapy using mannitol versus furosemide diuresis: comparative pharmacokinetics and toxicity. Cancer Treat Rep. 1981;65(1–2):73–8.PubMedGoogle Scholar
  38. 38.
    Hayes DM, Cvitkovic E, Golbey RB, Scheiner E, Helson L, Krakoff IH. High dose Cis-platinum diammine dichloride. Amelioration of renal toxicity by mannitol diuresis. Cancer. 1977;39(4):1372–81.CrossRefGoogle Scholar
  39. 39.
    Goren MP, Wright RK, Horowitz ME. Cumulative renal tubular damage associated with cisplatin nephrotoxicity. Cancer Chemother Pharmacol. 1986;18(1):69–73.CrossRefGoogle Scholar
  40. 40.
    Launay-Vacher V, Rey JB, Isnard-Bagnis C, Deray G, Daouphars M. Prevention of cisplatin nephrotoxicity: state of the art and recommendations from the European society of clinical pharmacy special interest group on cancer care. Cancer Chemother Pharmacol. 2008;61(6):903–9.CrossRefGoogle Scholar
  41. 41.
    Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–19.CrossRefGoogle Scholar
  42. 42.
    Himmelstein KJ, Patton TF, Belt RJ, Taylor S, Repta AJ, Sternson LA. Clinical kinetics of intact cisplatin and some related species. Clin Pharmacol Ther. 1981;29(5):658–64.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.King Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Faculty of PharmacyAin Shams UniversityCairoEgypt
  3. 3.Nasser Institute HospitalCairoEgypt
  4. 4.Critical Care Medicine DepartmentCairo University HospitalsGizaEgypt
  5. 5.Clinical Oncology Department, Faculty of MedicineCairo UniversityGizaEgypt

Personalised recommendations