International Journal of Clinical Pharmacy

, Volume 36, Issue 2, pp 420–429 | Cite as

Cisplatin dose adjustment in patients with renal impairment, which recommendations should we follow?

  • Youssef BennisEmail author
  • Amandine Savry
  • Magali Rocca
  • Laurence Gauthier-Villano
  • Pascale Pisano
  • Bertrand Pourroy
Research Article


Background Nephrotoxicity is the dose-limiting side effect of cisplatin justifying the assessment of renal function for dose adjustment. Objective To determine whether appropriate dose adjustment is made in patients with renal impairment using the Cockcroft–Gault (CG) or the abbreviated Modification of Diet in Renal Disease (aMDRD) formulas to estimate the glomerular filtration rate (GFR). Setting The study was conducted in a 1,000-bed university hospital. Method Two years of cisplatin prescriptions were retrospectively compared to the 4 and 3 ranges estimated glomerular filtration rate (eGFR)-stratified dosing recommendations (4RR and 3RR respectively). Main outcome measure Cisplatin dose in mg/m2 based on kidney function and according to the dosing recommendations. Results Among 1,364 cycles of cisplatin, 156 (11.4 %) were prescribed for 70 patients with eGFR < 60 mL/min and a median age of 67.4 years. For 57 (36 %) of these cycles, doses were not reduced. When reduced, prescribed doses were not different than recommended doses according to 4RR using CG (% of protocol, 63 ± 12 vs. 64 ± 17) while it was significantly lower using aMDRD (% of protocol, 66 ± 12 vs. 81 ± 22, p < 0.01) and significantly higher according to 3RR using both CG and aMDRD (% of protocol, 63 ± 12 vs. 50 ± 3 and 66 ± 12 vs. 50.7 ± 4.0 respectively, p < 0.01). Prescription of at least one appropriate dose according to 4RR and using aMDRD was associated with a statistically significant higher median total cumulative dose (% of protocol, 89.9 vs. 75.1 % respectively, p < 0.01) without higher decrease of eGFR over time. Conclusion Cisplatin dose adjustment in patients with renal impairment must be improved. Estimating GFR with the aMDRD formula and adding an intermediary level of dose reduction for patients with eGFR from 50 to 59.9 mL/min may result in a higher cumulative dose of cisplatin without higher renal toxicity, which may significantly impact on the effectiveness of the chemotherapy. A prospective evaluation remains needed to assess the benefit/risk ratio of this dose adaptation schedule, taking into account the variability of the GFR estimates.


Abbreviated MDRD Cisplatin Cockcroft–Gault Dose adjustment Glomerular filtration rate Renal impairment 




Conflicts of interest

All authors declare no conflict of interest relevant to the subject matter or materials discussed in the manuscript.


  1. 1.
    Taguchi T, Nazneen A, Abid MR, Razzaque MS. Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol. 2005;148:107–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Sastry J, Kellie SJ. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol. 2005;22(5):441–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003;23(5):460–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Boulikas T, Vougiouka M. Cisplatin and platinum drugs at the molecular level. Oncol Rep. 2003;10(6):1663–82.PubMedGoogle Scholar
  5. 5.
    Santoso JT, Lucci JA 3rd, Coleman RL, Schafer I, Hannigan EV. Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol. 2003;52(1):13–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Royer B, Guardiola E, Polycarpe E, Hoizey G, Delroeux D, Combe M, et al. Serum and intraperitoneal pharmacokinetics of cisplatin within intraoperative intraperitoneal chemotherapy: influence of protein binding. Anticancer Drugs. 2005;16(9):1009–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Avon, Somerset and Wiltshire Cancer Service. Cisplatin protocol [Internet]. 2012 [Updated December 2007; amended July 2012; cited July 2013].
  8. 8.
    Kintzel PE, Dorr RT. Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function. Cancer Treat Rev. 1995;21(1):33–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Bennett WM, Aronoff GR, Morrison G, Bennett WM, Aronoff GR, Morrison G, et al. Drug prescribing in renal failure: dosing guidelines for adults. Am J Kidney Dis. 1983;3(3):155–93.PubMedGoogle Scholar
  10. 10.
    Launay-Vacher V, Chatelut E, Lichtman SM, Wildiers H, Steer C, Aapro M. International Society of Geriatric Oncology. International Society of Geriatric Oncology. Renal insufficiency in elderly cancer patients: international Society of Geriatric Oncology clinical practice recommendations. Ann Oncol. 2007;18(8):1314–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Rosborough TK, Shepherd MF, Couch PL. Selecting an equation to estimate glomerular filtration rate for use in renal dosage adjustment of drugs in electronic patient record systems. Pharmacotherapy. 2005;25(6):823–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Coresh J, Stevens LA. Kidney function estimating equations: where do we stand? Curr Opin Nephrol Hypertens. 2006;15:276–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Levey AS, Stevens LA. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis. 2010;55(4):622–7.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Stevens LA, Schmid CH, Zhang YL, Coresh J, Manzi J, Landis R, et al. Development and validation of GFR-estimating equations using diabetes, transplant and weight. Nephrol Dial Transplant. 2010;25:449–57.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Launay-Vacher V, Oudard S, Janus N, Gligorov J, Pourrat X, Rixe O, et al. Prevalence of Renal Insufficiency in cancer patients and implications for anticancer drug management: the renal insufficiency and anticancer medications (IRMA) study. Cancer. 2007;110(6):1376–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Stevens LA, Nolin TD, Richardson MM, Feldman HI, Lewis JB, Rodby R, et al. Comparison of drug dosing recommendations based on measured GFR and kidney function estimating equations. Am J Kidney Dis. 2009;54(1):33–42.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    DuBois D, DuBois E. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–7115.CrossRefGoogle Scholar
  19. 19.
    Golik, Lawrence KR. Comparison of dosing recommendations for antimicrobial drugs based on two methods for assessing kidney function: cockcroft-gault and modification of diet in renal disease. Pharmacotherapy. 2008;28(9):1125–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Hudson JQ, Nyman HA. Use of estimated glomerular filtration rate for drug dosing in the chronic kidney disease patient. Curr Opin Nephrol Hypertens. 2011;20:482–91.PubMedCrossRefGoogle Scholar
  21. 21.
    Schellens JH, Ma J, Planting AS, van der Burg ME, van Meerten E, de Boer-Dennert M, et al. Relationship between the exposure to cisplatin, DNAadduct formation in leucocytes and tumour response in patients with solid tumours. Br J Cancer. 1996;73:1569.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Reece PA, Stafford I, Russell J, Khan M, Gill PG. Creatinine clearance as a predictor of ultrafilterable platinum disposition in cancer patients treated with cisplatin: relationship between peak ultrafilterable platinum plasma levels and nephrotoxicity. J Clin Oncol. 1987;5(2):304–9.PubMedGoogle Scholar
  23. 23.
    Erdlenbruch B, Nier M, Kern W, Hiddemann W, Pekrun A, Lakomek M. Pharmacokinetics of cisplatin and relation to nephrotoxicity in paediatric patients. Eur J Clin Pharmacol. 2001;57(5):393–402.PubMedCrossRefGoogle Scholar
  24. 24.
    Nagai N, Kinoshita M, Ogata H, Tsujino D, Wada Y, Someya K, et al. Relationship between pharmacokinetics of unchanged cisplatin and nephrotoxicity after intravenous infusions of cisplatin to cancer patients. Cancer Chemother Pharmacol. 1996;39(1–2):131–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Schellens JH, Planting AS, Ma J, Maliepaard M, de Vos A, de Boer Dennert M, et al. Adaptive intrapatient dose escalation of cisplatin in patients with advanced head and neck cancer. Anticancer Drugs. 2001;12(8):667–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Schellens JH, Planting AS, van Zandwijk N, Ma J, Maliepaard M, van der Burg ME, et al. Adaptive intrapatient dose escalation of cisplatin in combination with low-dose vp16 in patients with nonsmall cell lung cancer. Br J Cancer. 2003;88(6):814–21.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Monjanel-Mouterde S, Ciccolini J, Bagarry D, Zonta-David M, Duffaud F, Favre R, et al. Population pharmacokinetics of cisplatin after 120-h infusion: application to routine adaptive control with feedback. J Clin Pharm Ther. 2003;28(2):109–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Salas S, Mercier C, Ciccolini J, Pourroy B, Fanciullino R, Tranchand B, et al. Therapeutic drug monitoring for dose individualization of Cisplatin in testicular cancer patients based upon total platinum measurement in plasma. Ther Drug Monit. 2006;28(4):532–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Kovács AF, Cinatl J Jr. In vitro cytotoxic dose-relation of cisplatin and sodium thiosulphate in human tongue and oesophageal squamous carcinoma cell lines. J Craniomaxillofac Surg. 2002;30(1):54–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Gandara DR, Perez EA, Phillips WA, Lawrence HJ, DeGregorio M, et al. Evaluation of cisplatin dose intensity: current status and future prospects. Anticancer Res. 1989;9(4):1121–8.PubMedGoogle Scholar
  31. 31.
    Los G. Platinum dose-intensity. J Infus Chemother. 1996 Spring;6(2):64–8.Google Scholar
  32. 32.
    Smith SA. Estimation of glomerular filtration rate from the serum creatinine concentration. Postgrad Med J. 1988;64(749):204–8.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Wargo KA, Eiland EH 3rd, Hamm W, English TM, Phillippe HM. Comparison of the modification of diet in renal disease and Cockcroft-Gault equations for antimicrobial dosage adjustments. Ann Pharmacother. 2006;40(7–8):1248–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Barry A, O’Cearbhaill R, Griffin D, Donnellan P, Keane M, Grimes H. Evaluation of carboplatin dosage based on 4-variable modification of diet in renal disease equation. Ir J Med Sci. 2009;178(3):301–7.PubMedCrossRefGoogle Scholar
  35. 35.
    de Lemos ML, Hsieh T, Hamata L, Levin A, Swenerton K, Djurdjev O, et al. Evaluation of predictive formulae for glomerular filtration rate for carboplatin dosing in gynecological malignancies. Gynecol Oncol. 2006;103(3):1063–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157:471–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Delanaye P, Mariat C. The applicability of eGFR equations to different populations. Nat Rev Nephrol. 2013;9(9):513–22.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie 2014

Authors and Affiliations

  • Youssef Bennis
    • 1
    • 2
    Email author
  • Amandine Savry
    • 1
  • Magali Rocca
    • 1
  • Laurence Gauthier-Villano
    • 1
  • Pascale Pisano
    • 1
    • 2
  • Bertrand Pourroy
    • 1
  1. 1.Oncopharma Unit, Pharmacy DepartmentLa Timone University Teaching Hospital, AP-HMMarseilleFrance
  2. 2.Pharmacology Laboratory, INSERM UMR_S 1076, Faculty of PharmacyAix Marseille UniversityMarseilleFrance

Personalised recommendations