International Journal of Clinical Pharmacy

, Volume 33, Issue 1, pp 3–9 | Cite as

From evidence based medicine to mechanism based medicine. Reviewing the role of pharmacogenetics

  • Bob WilffertEmail author
  • Jesse Swen
  • Hans Mulder
  • Daan Touw
  • Anke-Hilse Maitland-Van der Zee
  • Vera Deneer
  • KNMP working group Pharmacogenetics
Research Article


Aim of the review The translation of evidence based medicine to a specific patient presents a considerable challenge. We present by means of the examples nortriptyline, tramadol, clopidogrel, coumarins, abacavir and antipsychotics the discrepancy between available pharmacogenetic information and its implementation in daily clinical practice. Method Literature review. Results A mechanism based approach may be helpful to personalize medicine for the individual patient to which pharmacogenetics may contribute significantly. The lack of consistency in what we accept in bioequivalence and in pharmacogenetics of drug metabolising enzymes is discussed and illustrated with the example of nortriptyline. The impact of pharmacogenetics on examples like tramadol, clopidogrel, coumarins and abacavir is described. Also the present status of the polymorphisms of 5-HT2A and C receptors in antipsychotic-induced weight gain is presented as a pharmacodynamic example with until now a greater distance to clinical implementation. Conclusion The contribution of pharmacogenetics to tailor-made pharmacotherapy, which especially might be of value for patients deviating from the average, has not yet reached the position it seems to deserve.


Drug metabolising enzymes Mechanism based medicine Pharmacodynamics Pharmacogenetics Pharmacokinetics 




Conflicts of interest

The division of Pharmacoepidemiology & Clinical Pharmacology employing author Anke-Hilse Maitland-van der Zee, has received unrestricted funding for pharmacoepidemiological research from GlaxoSmithKline, Novo Nordisk, the private–public funded Top Institute Pharma (, includes co-funding from universities, government, and industry), the Dutch Medicines Evaluation Board, and the Dutch Ministry of Health.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    de Graaf L. Force doctors to a joined consultation. Pharm Weekbl. 2009;45:8–11.Google Scholar
  2. 2.
    Huang SM, Temple R. Is this the drug or dose for you? Impact and consideration of ethnic factors in global drug development, regulatory review, and clinical practice. Clin Pharmacol Ther. 2008;84(3):287–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Swen JJ, Wilting I, de Goede AL, Grandia L, Mulder H, Touw DJ, et al. Pharmacogenetics: from bench to byte. Clin Pharmacol Ther. 2008;83(5):781–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Weinshilboum R. Inheritance and drug response. N Engl J Med. 2003;348(6):529–37.PubMedCrossRefGoogle Scholar
  5. 5.
    O’Connor AB, Dworkin RH. Treatment of neuropathic pain: an overview of recent guidelines. Am J Med. 2009;122(10 Suppl):S22–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Halling J, Weihe P, Brosen K. CYP2D6 polymorphism in relation to tramadol metabolism: a study of faroese patients. Ther Drug Monit. 2008;30(3):271–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Frink MC, Hennies HH, Englberger W, Haurand M, Wilffert B. Influence of tramadol on neurotransmitter systems of the rat brain. Arzneimittelforschung. 1996;46(11):1029–36.PubMedGoogle Scholar
  8. 8.
    Kirchheiner J, Keulen JT, Bauer S, Roots I, Brockmoller J. Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol. 2008;28(1):78–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357(20):2001–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Montalescot G, Wiviott SD, Braunwald E, Murphy SA, Gibson CM, McCabe CH, et al. Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial. Lancet. 2009;373(9665):723–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Holmes DR, Jr., Dehmer GJ, Kaul S, Leifer D, O’Gara PT, Stein CM. ACCF/AHA clopidogrel clinical alert: approaches to the FDA “Boxed Warning”. A report of the American College of Cardiology Foundation Task force on clinical expert consensus documents and the American Heart Association. Circulation 2010.Google Scholar
  13. 13.
    Roden DM, Altman RB, Benowitz NL, Flockhart DA, Giacomini KM, Johnson JA, et al. Pharmacogenomics: challenges and opportunities. Ann Intern Med. 2006;145(10):749–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE, et al. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry. 1998;44(11):1099–117.PubMedCrossRefGoogle Scholar
  15. 15.
    Reynolds GP, Templeman LA, Zhang ZJ. The role of 5-HT2C receptor polymorphisms in the pharmacogenetics of antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(6):1021–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Reynolds GP, Hill MJ, Kirk SL. The 5-HT2C receptor and antipsychoticinduced weight gain–mechanisms and genetics. J Psychopharmacol. 2006;20(4 Suppl):15–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Arranz MJ, Munro J, Birkett J, Bolonna A, Mancama D, Sodhi M, et al. Pharmacogenetic prediction of clozapine response. Lancet. 2000;355(9215):1615–6.PubMedCrossRefGoogle Scholar
  18. 18.
    De Luca V, Mueller DJ, de BA, Kennedy JL. Association of the HTR2C gene and antipsychotic induced weight gain: a meta-analysis. Int J Neuropsychopharmacol. 2007;10(5):697–704.PubMedCrossRefGoogle Scholar
  19. 19.
    Mulder H, Franke B, van der van der-Beek AA, Arends J, Wilmink FW, Scheffer H, et al. The association between HTR2C gene polymorphisms and the metabolic syndrome in patients with schizophrenia. J Clin Psychopharmacol. 2007;27(4):338–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Mulder H, Franke B, van der Beek AA, Arends J, Wilmink FW, Egberts AC, et al. The association between HTR2C polymorphisms and obesity in psychiatric patients using antipsychotics: a cross-sectional study. Pharmacogenomics J. 2007;7(5):318–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Mulder H, Cohen D, Scheffer H, Gispen-de WC, Arends J, Wilmink FW, et al. HTR2C gene polymorphisms and the metabolic syndrome in patients with schizophrenia: a replication study. J Clin Psychopharmacol. 2009;29(1):16–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Park YM, Cho JH, Kang SG, Choi JE, Lee SH, Kim L, et al. Lack of association between the -759C/T polymorphism of the 5-HT2C receptor gene and olanzapine-induced weight gain among Korean schizophrenic patients. J Clin Pharm Ther. 2008;33(1):55–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Reynolds GP, Zhang Z, Zhang X. Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Am J Psychiatry. 2003;160(4):677–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Templeman LA, Reynolds GP, Arranz B, San L. Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first-episode psychosis. Pharmacogenet Genomics. 2005;15(4):195–200.PubMedCrossRefGoogle Scholar
  25. 25.
    Theisen FM, Hinney A, Bromel T, Heinzel-Gutenbrunner M, Martin M, Krieg JC, et al. Lack of association between the -759C/T polymorphism of the 5-HT2C receptor gene and clozapine-induced weight gain among German schizophrenic individuals. Psychiatr Genet. 2004;14(3):139–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Becquemont L. Pharmacogenomics of adverse drug reactions: practical applications and perspectives. Pharmacogenomics. 2009;10(6):961–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41(7):816–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486.PubMedCrossRefGoogle Scholar
  29. 29.
    Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358(6):568–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Meyer UA. Pharmacogenetics–five decades of therapeutic lessons from genetic diversity. Nat Rev Genet. 2004;5(9):669–76.PubMedCrossRefGoogle Scholar
  31. 31.
    van Schie RM, Cascorbi I, Maitland-van der Zee AH. Conference scene: pharmacogenomics at the second PharmSciFair 2009: adverse drug reactions and clinical implementation. Pharmacogenomics. 2009;10(9):1389–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Wilms EB, Veldkamp RF, van ME, Touw DJ. Partial resistance to acenocoumarol and phenprocoumon caused by enzyme polymorphism. Ned Tijdschr Geneeskd. 2006;150(38):2095–8.PubMedGoogle Scholar
  33. 33.
    Tan GM, Wu E, Lam YY, Yan BP. Role of warfarin pharmacogenetic testing in clinical practice. Pharmacogenomics. 2010;11(3):439–48.PubMedCrossRefGoogle Scholar
  34. 34.
    D’Andrea G, D’Ambrosio RL, Di PP, Chetta M, Santacroce R, Brancaccio V, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005;105(2):645–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature. 2004;427(6974):541–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004;427(6974):537–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Woodcock J, Lesko LJ. Pharmacogenetics–tailoring treatment for the outliers. N Engl J Med. 2009;360(8):811–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Swen JJ, Huizinga TW, Gelderblom H, de Vries EG, Assendelft WJ, Kirchheiner J, et al. Translating pharmacogenomics: challenges on the road to the clinic. PLoS Med. 2007;4(8):e209.PubMedCrossRefGoogle Scholar
  41. 41.
    Williams JA, Andersson T, Andersson TB, Blanchard R, Behm MO, Cohen N, et al. PhRMA white paper on ADME pharmacogenomics. J Clin Pharmacol. 2008;48(7):849–89.PubMedCrossRefGoogle Scholar
  42. 42.
    Check HE. Genome sequencing: the third generation. Nature. 2009;457(7231):768–9.CrossRefGoogle Scholar
  43. 43.
    Abdel-Rahman SM, Leeder JS, Wilson JT, Gaedigk A, Gotschall RR, Medve R, et al. Concordance between tramadol and dextromethorphan parent/metabolite ratios: the influence of CYP2D6 and non-CYP2D6 pathways on biotransformation. J Clin Pharmacol. 2002;42(1):24–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Borlak J, Hermann R, Erb K, Thum T. A rapid and simple CYP2D6 genotyping assay–case study with the analgetic tramadol. Metabolism. 2003;52(11):1439–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Enggaard TP, Poulsen L, rendt-Nielsen L, Brosen K, Ossig J, Sindrup SH. The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg. 2006;102(1):146–50.PubMedCrossRefGoogle Scholar
  46. 46.
    Paar WD, Poche S, Gerloff J, Dengler HJ. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol. 1997;53(3–4):235–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Poulsen L, rendt-Nielsen L, Brosen K, Sindrup SH. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther. 1996;60(6):636–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Stamer UM, Lehnen K, Hothker F, Bayerer B, Wolf S, Hoeft A, et al. Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain. 2003;105(1–2):231–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Gan SH, Ismail R, Wan Adnan WA, Wan Z. Correlation of tramadol pharmacokinetics and CYP2D6*10 genotype in Malaysian subjects. J Pharm Biomed Anal. 2002;30(2):189–95.PubMedCrossRefGoogle Scholar
  50. 50.
    Gleason PP, Frye RF, O’Toole T. Debilitating reaction following the initial dose of tramadol. Ann Pharmacother. 1997;31(10):1150–2.PubMedGoogle Scholar
  51. 51.
    Aynacioglu AS, Brockmoller J, Bauer S, Sachse C, Guzelbey P, Ongen Z, et al. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol. 1999;48(3):409–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Caraco Y, Muszkat M, Wood AJ. Phenytoin metabolic ratio: a putative marker of CYP2C9 activity in vivo. Pharmacogenetics. 2001;11(7):587–96.PubMedCrossRefGoogle Scholar
  53. 53.
    Hennessy S, Leonard CE, Freeman CP, Metlay JP, Chu X, Strom BL, et al. CYP2C9, CYP2C19, and ABCB1 genotype and hospitalization for phenytoin toxicity. J Clin Pharmacol. 2009;49(12):1483–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Kerb R, Aynacioglu AS, Brockmoller J, Schlagenhaufer R, Bauer S, Szekeres T, et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenomics J. 2001;1(3):204–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Rosemary J, Surendiran A, Rajan S, Shashindran CH, Adithan C. Influence of the CYP2C9 AND CYP2C19 polymorphisms on phenytoin hydroxylation in healthy individuals from south India. Indian J Med Res. 2006;123(5):665–70.PubMedGoogle Scholar
  56. 56.
    Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A. 2005;102(15):5507–12.PubMedCrossRefGoogle Scholar
  57. 57.
    van der Weide WJ, Steijns LS, van Weelden MJ, de HK. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics. 2001;11(4):287–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Hashimoto Y, Otsuki Y, Odani A, Takano M, Hattori H, Furusho K, et al. Effect of CYP2C polymorphisms on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Biol Pharm Bull. 1996;19(8):1103–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Hung CC, Lin CJ, Chen CC, Chang CJ, Liou HH. Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther Drug Monit. 2004;26(5):534–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee SY, Lee ST, Kim JW. Contributions of CYP2C9/CYP2C19 genotypes and drug interaction to the phenytoin treatment in the Korean epileptic patients in the clinical setting. J Biochem Mol Biol. 2007;40(3):448–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Mamiya K, Ieiri I, Shimamoto J, Yukawa E, Imai J, Ninomiya H, et al. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia. 1998;39(12):1317–23.PubMedCrossRefGoogle Scholar
  62. 62.
    McCluggage LK, Voils SA, Bullock MR. Phenytoin toxicity due to genetic polymorphism. Neurocrit Care. 2009;10(2):222–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Ninomiya H, Mamiya K, Matsuo S, Ieiri I, Higuchi S, Tashiro N. Genetic polymorphism of the CYP2C subfamily and excessive serum phenytoin concentration with central nervous system intoxication. Ther Drug Monit. 2000;22(2):230–2.PubMedCrossRefGoogle Scholar
  64. 64.
    Odani A, Hashimoto Y, Otsuki Y, Uwai Y, Hattori H, Furusho K, et al. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther. 1997;62(3):287–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Soga Y, Nishimura F, Ohtsuka Y, Araki H, Iwamoto Y, Naruishi H, et al. CYP2C polymorphisms, phenytoin metabolism and gingival overgrowth in epileptic subjects. Life Sci. 2004;74(7):827–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Brandolese R, Scordo MG, Spina E, Gusella M, Padrini R. Severe phenytoin intoxication in a subject homozygous for CYP2C9*3. Clin Pharmacol Ther. 2001;70(4):391–4.PubMedGoogle Scholar
  67. 67.
    Jose L, Binila C, Chandy SJ, Mathews JE, Mathews KP. Acenocoumarol and phenytoin toxicity in the presence of CYP2C9 mutation. J Assoc Physicians India. 2008;56:250–2.PubMedGoogle Scholar
  68. 68.
    Kidd RS, Straughn AB, Meyer MC, Blaisdell J, Goldstein JA, Dalton JT. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics. 1999;9(1):71–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Ramasamy K, Narayan SK, Chanolean S, Chandrasekaran A. Severe phenytoin toxicity in a CYP2C9*3*3 homozygous mutant from India. Neurol India. 2007;55(4):408–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Baumann P, Nil R, Souche A, Montaldi S, Baettig D, Lambert S, et al. A double-blind, placebo-controlled study of citalopram with and without lithium in the treatment of therapy-resistant depressive patients: a clinical, pharmacokinetic, and pharmacogenetic investigation. J Clin Psychopharmacol. 1996;16(4):307–14.PubMedCrossRefGoogle Scholar
  71. 71.
    Herrlin K, Yasui-Furukori N, Tybring G, Widen J, Gustafsson LL, Bertilsson L. Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br J Clin Pharmacol. 2003;56(4):415–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ, et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS One. 2008;3(4):e1872.PubMedCrossRefGoogle Scholar
  73. 73.
    Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E. Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther. 2008;83(2):322–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Sindrup SH, Brosen K, Hansen MG, Aaes-Jorgensen T, Overo KF, Gram LF. Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit. 1993;15(1):11–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Yin OQ, Wing YK, Cheung Y, Wang ZJ, Lam SL, Chiu HF, et al. Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol. 2006;26(4):367–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Yu BN, Chen GL, He N, Ouyang DS, Chen XP, Liu ZQ, et al. Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab Dispos. 2003;31(10):1255–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Rudberg I, Hendset M, Uthus LH, Molden E, Refsum H. Heterozygous mutation in CYP2C19 significantly increases the concentration/dose ratio of racemic citalopram and escitalopram (S-citalopram). Ther Drug Monit. 2006;28(1):102–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Ohlsson RS, Mwinyi J, Andersson M, Baldwin RM, Pedersen RS, Sim SC, et al. Kinetics of omeprazole and escitalopram in relation to the CYP2C19*17 allele in healthy subjects. Eur J Clin Pharmacol. 2008;64(12):1175–9.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Bob Wilffert
    • 1
    Email author
  • Jesse Swen
    • 2
  • Hans Mulder
    • 3
  • Daan Touw
    • 4
  • Anke-Hilse Maitland-Van der Zee
    • 5
  • Vera Deneer
    • 6
  • KNMP working group Pharmacogenetics
    • 7
  1. 1.Department of Quality and PatientsafetyZorggroep NoorderbreedteLeeuwardenThe Netherlands
  2. 2.Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Department of Clinical PharmacyWilhelmina Hospital AssenAssenThe Netherlands
  4. 4.Apotheek Haagse ZiekenhuizenDen HaagThe Netherlands
  5. 5.Department of Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute for Pharmaceutical Sciences (UIPS)University of UtrechtUtrechtThe Netherlands
  6. 6.Department of Clinical PharmacySt. Antonius HospitalNieuwegeinThe Netherlands
  7. 7.KNMP/GICThe HagueThe Netherlands

Personalised recommendations