Pharmaceutical Research

, 36:184 | Cite as

Stability and Biological Activity of E. coli Derived Soluble and Precipitated Bone Morphogenetic Protein-2

  • Bastian Quaas
  • Laura Burmeister
  • Zhaopeng Li
  • Alexandra Satalov
  • Peter Behrens
  • Andrea Hoffmann
  • Ursula RinasEmail author
Research Paper



There is a plethora of studies on recombinant human bone morphogenetic protein-2 (rhBMP-2) application and delivery systems, but surprisingly few reports address the biophysical properties of the protein which are of crucial importance to develop effective delivery systems or to solve general problems related to rhBMP-2 production, purification, analysis and application.


The solubility, stability and bioactivity of rhBMP-2 obtained by renaturation of E. coli derived inclusion bodies was assessed at different pH and in different buffer systems using (dynamic) light scattering and thermal shift assays as well as intrinsic fluorescence measurements and luciferase based bioassays.


rhBMP-2 is poorly soluble at physiological pH and higher. The presence of divalent anions further decreases the solubility even under acidic conditions. Thermal stability analyses revealed that rhBMP-2 precipitates are more stable compared to the soluble protein. Moreover, correctly folded rhBMP-2 is also bioactive as precipitated protein and precipitates readily dissolve under appropriate buffer conditions. Once properly formed rhBMP-2 also retains biological activity after temporary exposure to high concentrations of chaotropic denaturants. However, care should be taken to discriminate bioactive rhBMP-2 precipitates from misfolded rhBMP-2 aggregates, e.g. resolvability in MES buffer (pH 5) and a discrete peak in thermoshift experiments are mandatory for correctly folded rhBMP-2.


Our analysis revealed that E. coli derived rhBMP-2 precipitates are not only bioactive but are also more stable compared to the soluble dimeric molecules. Knowledge about these unusual properties will be helpful to design improved delivery systems requiring lower amounts of rhBMP-2 in clinical applications.


protein aggregation protein solubility protein stability recombinant human bone morphogenetic protein-2 refolding 



BMP responsive element luciferase


Chinese hamster ovary


Dynamic light scattering

E. coli

Escherichia coli


Guanidine hydrochloride


normalized relative fluorescence units


normalized relative light units


Isoelectric point


Recombinant human bone morphogenetic protein 2


Relative light units


Transforming growth factor β


Denaturation (melting) temperature



The authors gratefully acknowledge funding through the Forschergruppe “Gradierte Implantate” FOR2180 and the Exzellenzcluster “Rebirth” EXC62, both Deutsche Forschungsgemeinschaft (DFG), and excellent technical assistance by Anika Hamm (bioactivity measurements), Graded Implants and Regenerative Strategies. We also want to thank the reviewers for their careful and critical reading which helped a lot to improve the manuscript.

Supplementary material

11095_2019_2705_MOESM1_ESM.docx (169 kb)
ESM 1 (DOCX 169 kb)


  1. 1.
    Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, et al. Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci USA. 1990;87:9843–7.CrossRefGoogle Scholar
  2. 2.
    Scheufler C, Sebald W, Hülsmeyer M. Crystal structure of human bone morphogenetic protein-2 at 2.7 Å resolution. J Mol Biol. 1999;287:103–15.CrossRefGoogle Scholar
  3. 3.
    Uludag H, D'Augusta D, Golden J, Li J, Timony G, Riedel R, et al. Implantation of recombinant human bone morphogenetic proteins with biomaterial carriers: a correlation between protein pharmacokinetics and osteoinduction in the rat ectopic model. J Biomed Mater Res. 2000;50:227–38.CrossRefGoogle Scholar
  4. 4.
    McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE bone graft). Int Orthop. 2007;31:729–34.CrossRefGoogle Scholar
  5. 5.
    Granjeiro JM, Oliveira RC, Bustos-Valenzuela JC, Sogayar MC, Taga R. Bone morphogenetic proteins: from structure to clinical use. Braz J Med Biol Res. 2005;38:1463–73.CrossRefGoogle Scholar
  6. 6.
    El Bialy I, Jiskoot W, Reza NM. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017;34:1152–70.CrossRefGoogle Scholar
  7. 7.
    Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988;242:1528–34.CrossRefGoogle Scholar
  8. 8.
    Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010;28:917–24.CrossRefGoogle Scholar
  9. 9.
    Vallejo LF, Rinas U. Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration. Biotechnol Bioeng. 2004;85:601–9.CrossRefGoogle Scholar
  10. 10.
    Quaas B, Burmeister L, Li Z, Nimtz M, Hoffmann A, Rinas U. Properties of dimeric, disulfide-linked rhBMP-2 recovered from E. coli derived inclusion bodies by mild extraction or chaotropic solubilisation and subsequent refolding. Process Biochem. 2018;67:80–7.CrossRefGoogle Scholar
  11. 11.
    van de Watering FC, van den Beucken JJ, van der Woning SP, Briest A, Eek A, Qureshi H, et al. Non-glycosylated BMP-2 can induce ectopic bone formation at lower concentrations compared to glycosylated BMP-2. J Control Release. 2012;159:69–77.CrossRefGoogle Scholar
  12. 12.
    Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21:1025–32.CrossRefGoogle Scholar
  13. 13.
    Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, et al. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun. 1990;172:295–9.CrossRefGoogle Scholar
  14. 14.
    Kisiel M, Ventura M, Oommen OP, George A, Walboomers XF, Hilborn J, et al. Critical assessment of rhBMP-2 mediated bone induction: an in vitro and in vivo evaluation. J Control Release. 2012;162:646–53.CrossRefGoogle Scholar
  15. 15.
    Schwartz D, Sofia S, Friess W. Integrity and stability studies of precipitated rhBMP-2 microparticles with a focus on ATR-FTIR measurements. Eur J Pharm Biopharm. 2006;63:241–8.CrossRefGoogle Scholar
  16. 16.
    Sofia SJ, Schwartz D, Friess W. Formulation comprising bioactive agents and method of using them. US Patent 7,897,174 B2. 2011.Google Scholar
  17. 17.
    Sampath TK, Reddi AH. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci USA. 1981;78:7599–603.CrossRefGoogle Scholar
  18. 18.
    Luca L, Capelle MA, Machaidze G, Arvinte T, Jordan O, Gurny R. Physical instability, aggregation and conformational changes of recombinant human bone morphogenetic protein-2 (rhBMP-2). Int J Pharm. 2010;391:48–54.CrossRefGoogle Scholar
  19. 19.
    Abbatiello SE, Porter TJ. Anion-mediated precipitation of recombinant human bone morphogenetic protein (rhBMP-2) is dependent upon the heparin binding N-terminal region. Poster presented at the Protein Society Meeting, Boston MA, July 13–16. 1997.Google Scholar
  20. 20.
    Gilde F, Maniti O, Guillot R, Mano JF, Logeart-Avramoglou D, Sailhan F, et al. Secondary structure of rhBMP-2 in a protective biopolymeric carrier material. Biomacromolecules. 2012;13:3620–6.CrossRefGoogle Scholar
  21. 21.
    Yano K, Hoshino M, Ohta Y, Manaka T, Naka Y, Imai Y, et al. Osteoinductive capacity and heat stability of recombinant human bone morphogenetic protein-2 produced by Escherichia coli and dimerized by biochemical processing. J Bone Miner Metab. 2009;27:355–63.CrossRefGoogle Scholar
  22. 22.
    Ruppert R, Hoffmann E, Sebald W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem. 1996;237:295–302.CrossRefGoogle Scholar
  23. 23.
    Vallejo LF, Brokelmann M, Marten S, Trappe S, Cabrera-Crespo J, Hoffmann A, et al. Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol. 2002;94:185–94.CrossRefGoogle Scholar
  24. 24.
    Georgiou CD, Grintzalis K, Zervoudakis G, Papapostolou I. Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins. Anal Bioanal Chem. 2008;391:391–403.CrossRefGoogle Scholar
  25. 25.
    Demeule B, Gurny R, Arvinte T. Detection and characterization of protein aggregates by fluorescence microscopy. Int J Pharm. 2007;329:37–45.CrossRefGoogle Scholar
  26. 26.
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82:518–29.CrossRefGoogle Scholar
  27. 27.
    Boivin S, Kozak S, Meijers R. Optimization of protein purification and characterization using Thermofluor screens. Protein Expr Purif. 2013;91:192–206.CrossRefGoogle Scholar
  28. 28.
    Lorenz C, Hoffmann A, Gross G, Windhagen H, Dellinger P, Mohwald K, et al. Coating of titanium implant materials with thin polymeric films for binding the signaling protein BMP2. Macromol Biosci. 2011;11:234–44.CrossRefGoogle Scholar
  29. 29.
    Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277:4883–91.CrossRefGoogle Scholar
  30. 30.
    Martinez-Rosell G, Giorgino T, De FG. PlayMolecule ProteinPrepare: a web application for protein preparation for molecular dynamics simulations. J Chem Inf Model. 2017;57:1511–6.CrossRefGoogle Scholar
  31. 31.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.CrossRefGoogle Scholar
  32. 32.
    Bolten SN, Rinas U, Scheper T. Heparin: role in protein purification and substitution with animal-component free material. Appl Microbiol Biotechnol. 2018;102:8647–60.CrossRefGoogle Scholar
  33. 33.
    Zhou C, Qi W, Lewis EN, Carpenter JF. Characterization of sizes of aggregates of insulin analogs and the conformations of the constituent protein molecules: a concomitant dynamic light scattering and raman spectroscopy study. J Pharm Sci. 2016;105:551–8.CrossRefGoogle Scholar
  34. 34.
    Urist MR, Huo YK, Brownell AG, Hohl WM, Buyske J, Lietze A, et al. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci USA. 1984;81:371–5.CrossRefGoogle Scholar
  35. 35.
    Rao MT, Bhuyan AK, Venu K, Sastry VS. Nonlinear effect of GdnHCl on hydration dynamics of proteins: a 1H magnetic relaxation dispersion study. J Phys Chem B. 2009;113:6994–7002.CrossRefGoogle Scholar
  36. 36.
    Kumar R, Bhuyan AK. Entropic stabilization of myoglobin by subdenaturing concentrations of guanidine hydrochloride. J Biol Inorg Chem. 2009;14:11–21.CrossRefGoogle Scholar
  37. 37.
    Sole M, Brandt W, Arnold U. Striking stabilization of Rana catesbeiana ribonuclease 3 by guanidine hydrochloride. FEBS Lett. 2013;587:737–42.CrossRefGoogle Scholar
  38. 38.
    Mayr LM, Schmid FX. Stabilization of a protein by guanidinium chloride. Biochemistry. 1993;32:7994–8.CrossRefGoogle Scholar
  39. 39.
    Vallejo LF, Rinas U. Folding and dimerization kinetics of bone morphogenetic protein-2, a member of the transforming growth factor-β family. FEBS J. 2013;280:83–92.CrossRefGoogle Scholar
  40. 40.
    Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J, et al. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody. Mol Pharm. 2015;12:179–93.CrossRefGoogle Scholar
  41. 41.
    Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol. 2014;32:372–80.CrossRefGoogle Scholar
  42. 42.
    Schmoekel H, Schense JC, Weber FE, Gratz KW, Gnagi D, Muller R, et al. Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. J Orthop Res. 2004;22:376–81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bastian Quaas
    • 1
  • Laura Burmeister
    • 2
    • 3
  • Zhaopeng Li
    • 1
  • Alexandra Satalov
    • 4
    • 5
  • Peter Behrens
    • 3
    • 4
  • Andrea Hoffmann
    • 2
    • 3
  • Ursula Rinas
    • 1
    • 6
    Email author
  1. 1.Leibniz University of Hannover, Technical Chemistry – Life ScienceHannoverGermany
  2. 2.Hannover Medical School, Department of Orthopedic Surgery Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and BiomaterialsHannoverGermany
  3. 3.Lower Saxony Center for Biomedical Engineering Implant Research and DevelopmentHannoverGermany
  4. 4.Leibniz University Hannover, Institute for Inorganic ChemistryHannoverGermany
  5. 5.Pasargad Institute for Advanced Innovative SolutionsTehranIran
  6. 6.Helmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations