Advertisement

Pharmaceutical Research

, 36:182 | Cite as

E-Jet 3D-Printed Scaffolds as Sustained Multi-Drug Delivery Vehicles in Breast Cancer Therapy

  • Xiaoyin Qiao
  • Yikun Yang
  • Ruiying Huang
  • Xuelei Shi
  • Haoxiang Chen
  • Jian Wang
  • Yanxiang ChenEmail author
  • Yongjun Tan
  • Zhikai TanEmail author
Research Paper
  • 98 Downloads

Abstract

Purpose

Combination chemotherapy is gradually receiving more attention because of its potential synergistic effect and reduced drug doses in clinical application. However, how to precisely control drug release dose and time using vehicles remains a challenge. This work developed an efficient drug delivery system to combat breast cancer, which can enhance drug effects despite reducing its concentration.

Methods

Controlled-release poly-lactic-co-glycolic acid (PLGA) scaffolds were fabricated by E-jet 3D printing to deliver doxorubicin (DOX) and cisplatin (CDDP) simultaneously.

Results

This drug delivery system allowed the use of a reduced drug dosage resulting in a better effect on the human breast cancer cell apoptosis and inhibiting tumor growth, compared with the effect of each drug and the two drugs administrated without PLGA scaffolds. Our study suggested that DOX-CDDP-PLGA scaffolds could efficiently destroy MDA-MB-231 cells and restrain tumor growth.

Conclusions

The 3D printed PLGA scaffolds with their time-programmed drug release might be useful as a new multi-drug delivery vehicle in cancer therapy, which has a potential advantage in a long term tumor cure and prevention of tumor recurrence.

Key Words

cisplatin combination chemotherapy controlled release doxorubicin E-jet 3D printing 

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by National Natural Science Foundation of China (No. 31600782), Natural Science Foundation of Hunan Province (No. 2019JJ40018), Shenzhen Science and Technology Innovation Commission (No. JCYJ20170818112151323), and Hunan University (No. 53112102). The authors declare that they have no competing interests.

Supplementary material

11095_2019_2687_MOESM1_ESM.docx (8.1 mb)
ESM 1 (DOCX 8270 kb)

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRefGoogle Scholar
  2. 2.
    Xiang LP, Wang A, Ye JH, Zheng XQ, Polito CA, Lu JL, et al. Suppressive effects of tea Catechins on breast Cancer. Nutrients. 2016;8(8):458.PubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bielawski K, Czarnomysy R, Muszyńska A, Bielawska A, Popławska B. Cytotoxicity and induction of apoptosis of human breast cancer cells by novel platinum(II) complexes. Environ Toxicol Pharmacol. 2013;35(2):254–64.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ja-Hyoung R, Chacko RT, Siriporn J, Sean B, Prakash BR, Thayumanavan S. Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J Am Chem Soc. 2010;132(48):17227.CrossRefGoogle Scholar
  5. 5.
    Di H, Wu H, Ying G, Li W, Zou D, Dong C. Doxorubicin- and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy. Drug Dev Ind Pharm. 2016;42(12):1.CrossRefGoogle Scholar
  6. 6.
    Hu Q, Sun W, Chao W, Zhen G. Recent advances of cocktail chemotherapy by combination drug delivery systems ☆. Adv Drug Deliv Rev. 2016;98:19–34.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Massa E, Puzzoni M, Demurtas L, Cubeddu A, Pusole G, Dessì A, et al. E40Clinical outcome of patients with stage IV colorectal Cancer receiving combination chemotherapy without surgery as initial treatment. J Bryol. 2015.Google Scholar
  8. 8.
    Mcmeekin S, Dizon D, Barter J, Scambia G, Manzyuk L, Lisyanskaya A, et al. Phase III randomized trial of second-line ixabepilone versus paclitaxel or doxorubicin in women with advanced endometrial cancer. Gynecol Oncol. 2015;138(1):18–23.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cai L, Xu G, Shi C, Guo D, Wang X, Luo J. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials. 2015;37(37C):456–68.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chou TC. Theoretical basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol Rev. 2006;58(3):621–81.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Oliverasferraros C, Vazquezmartin A, Colomer R, De LR, Brunet J, Menendez JA. Sequence-dependent synergism and antagonism between paclitaxel and gemcitabine in breast cancer cells: the importance of scheduling. Int J Oncol. 2008;32(32):113–20.Google Scholar
  12. 12.
    Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, Macbeath G, et al. Sequential application of anti-Cancer drugs enhances cell death by re-wiring apoptotic signaling networks. Cell. 2012;149(4):780–94.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Núñez C, Capelo JL, Igrejas G, Alfonso A, Botana LM, Lodeiro C. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials. 2016;97:34–50.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ranganath SH, Fu Y, Arifin DY, Kee I, Zheng L, Lee HS, et al. The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials. 2010;31(19):5199–207.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kim YJ, Ebara M, Aoyagi T. A smart hyperthermia nanofiber with switchable drug release for inducing Cancer apoptosis. Adv Funct Mater. 2013;23(46):5753–61.CrossRefGoogle Scholar
  16. 16.
    Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4(4):307.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee SM, O'Halloran TV, Nguyen ST. Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J Am Chem Soc. 2010;132(48):17130–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim KH, Jelovac D, Armstrong DK, Schwartz B, Weil SC, Schweizer C, et al. Phase 1b safety study of Farletuzumab, carboplatin and Pegylated liposomal doxorubicin in patients with platinum-sensitive epithelial ovarian Cancer. Gynecol Oncol. 2016;140(2):210–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Harries M, Gore M. Part I: chemotherapy for epithelial ovarian cancer-treatment at first diagnosis. Lancet Oncol. 2002;3(9):529–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Srivastava SK, Bhardwaj A, Arora S, Tyagi N, Singh S, Andrews J, et al. MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br J Cancer. 2015;113(4):660–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Takei Y, Okamoto S, Kawamura K, Jiang Y, Morinaga T, Shingyoji M, et al. Expression of p53 synergistically augments caspases-mediated apoptosis induced by replication-competent adenoviruses in pancreatic carcinoma cells. Cancer Gene Ther. 2015;22(9):445–53.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Del BB, Valentini MA, Mangiavacchi P, Comporti M, Maellaro E. Role of caspases-3 and -7 in Apaf-1 proteolytic cleavage and degradation events during cisplatin-induced apoptosis in melanoma cells. Exp Cell Res. 2004;293(2):302–10.CrossRefGoogle Scholar
  24. 24.
    Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16(4):273.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater. 2011;23(47):5651–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Silva GR, Almeida APR, Fernandes-Cunha GM, Castro BFM, Vieira LC, Fulgêncio GO, et al. Safety and invivo release of fluconazole-loaded implants in rabbits' eyes. J Drug Delivery Sci Technol. 2016;35:323–6.CrossRefGoogle Scholar
  27. 27.
    Millet I, Bouicpages E, Hoa D, Azria D, Taourel P. Growth of breast cancer recurrences assessed by consecutive MRI. BMC Cancer. 2011;11(1):155–5.Google Scholar
  28. 28.
    Liu T, Huang R, Zhong J, Yang Y, Tan Z, Tan W. Control of cell proliferation in E-jet 3D-printed scaffolds for tissue engineering applications: the influence of the cell alignment angle. J Mater Chem B. 2017;5(20):3728–38.CrossRefGoogle Scholar
  29. 29.
    Bode C, Kranz H, Fivez A, Siepmann F, Siepmann J. Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. J Control Release. 2019;306:97–107.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Klose D, Siepmann F, Elkharraz K, Krenzlin S, Siepmann J. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int J Pharm. 2006;314(2):198–206.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ng CS, Wan S, Yim AP. Pulmonary ischaemia-reperfusion injury: role of apoptosis. Eur Respir J. 2005;25(2):356–63.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wu QX, Zhang QL, Lin DQ, Yao SJ. Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. Int J Pharm. 2013;455(1–2):124–31.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    K. Hirota, A.C. Doty, R. Ackermann, J. Zhou, K.F. Olsen, M.R. Feng, Y. Wang, S. Choi, W. Qu, A.S. Schwendeman, Characterizing release mechanisms of leuprolide acetate-loaded PLGA microspheres for IVIVC development I: In vitro evaluation, Journal of Controlled Release Official Journal of the Controlled Release Society 244 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. Int J Pharm. 2011;415(1–2):34–52.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ding AG, Schwendeman SP. Determination of water-soluble acid distribution in poly(lactide-co-glycolide). J Pharm Sci. 2004;93(2):322–31.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Klose D, Siepmann F, Elkharraz K, Krenzlin S, Siepmann J. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int J Pharm. 2006;314(2):198–206.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gyan E, Foussard C, Bertrand P, Michenet P, Le GS, Berthou C, et al. High-dose therapy followed by autologous purged stem cell transplantation and doxorubicin-based chemotherapy in patients with advanced follicular lymphoma: a randomized multicenter study by the GOELAMS with final results after a median follow-up of 9 years. Blood. 2009;113(5):995–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Thigpen T, Vance R, Puneky L, Khansur T. Chemotherapy in advanced ovarian carcinoma: current standards of care based on randomized trials. Gynecol Oncol. 1994;55(2):97–107.CrossRefGoogle Scholar
  39. 39.
    Biondi M, Fusco S, Lewis AL, Netti PA. Investigation of the mechanisms governing doxorubicin and irinotecan release from drug-eluting beads: mathematical modeling and experimental verification. J Mater Sci Mater Med. 2013;24(10):2359–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Shanmugam V, Chien YH, Cheng YS, Liu TY, Huang CC, Su CH, et al. Oligonucleotides--assembled au nanorod-assisted cancer photothermal ablation and combination chemotherapy with targeted dual-drug delivery of doxorubicin and cisplatin prodrug. ACS Appl Mater Interfaces. 2014;6(6):4382–93.CrossRefGoogle Scholar
  41. 41.
    Lehàr J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, et al. Synergistic drug combinations improve therapeutic selectivity. Nat Biotechnol. 2009;27(7):659–66.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kumidiaka J, Sanderson NA, Hall A. The mediating role of caspase-3 protease in the intracellular mechanism of genistein-induced apoptosis in human prostatic carcinoma cell lines, DU145 and LNCaP. Biol Cell. 2000;92(8–9):595–604.CrossRefGoogle Scholar
  43. 43.
    Bertz S, Otto W, Denzinger S, Wieland WF, Burger M, Stöhr R, et al. Combination of CK20 and Ki-67 immunostaining analysis predicts recurrence, progression, and Cancer-specific survival in pT1 urothelial bladder Cancer. Eur Urol. 2014;65(1):218–26.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Klauschen F, Wienert S, Schmitt W, Loibl S, Gerber B, Blohmer JU, et al. Standardized Ki67 diagnostics using automated scoring - clinical validation in the GeparTrio breast cancer study. Clin Cancer Res. 2015;21(16):3651–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S. An implantable active-targeting micelle-in-nanofiber device for efficient and safe Cancer therapy. ACS Nano. 2015;9(2):1161–74.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoyin Qiao
    • 1
  • Yikun Yang
    • 1
  • Ruiying Huang
    • 1
  • Xuelei Shi
    • 1
  • Haoxiang Chen
    • 1
  • Jian Wang
    • 1
  • Yanxiang Chen
    • 2
    Email author
  • Yongjun Tan
    • 1
  • Zhikai Tan
    • 1
    • 3
    Email author
  1. 1.College of BiologyHunan UniversityChangshaChina
  2. 2.Department of Obstetrics and Gynecology, Renmin HospitalWuhan UniversityWuhanChina
  3. 3.Shenzhen InstituteHunan UniversityShenzhenChina

Personalised recommendations