Cefquinome-Loaded Microsphere Formulations in Protection against Pneumonia with Klebsiella pneumonia Infection and Inflammatory Response in Rats

  • Shaoqi Qu
  • Cunchun Dai
  • Fenfang Yang
  • Tingting Huang
  • Zhihui HaoEmail author
  • Qihe Tang
  • Haixia Wang
  • Yanping Zhang
Research Paper



This study aimed to compare in vivo activity between cefquinome (CEQ)-loaded poly lactic-co-glycolic acid (PLGA) microspheres (CEQ-PLGA-MS) and CEQ injection (CEQ-INJ) against Klebsiella pneumonia in a rat lung infection model.


Forty-eight rats were divided into control group (sham operated without infection and drug treatment), Klebsiella pneumonia model group (KPD + Saline), CEQ-PLGA-MS and CEQ-INJ therapy groups (KPD + CEQ-PLGA-MS and KPD + INJ, respectively). In the KPD + Saline group, rats were infected with Klebsiella pneumonia ATCC 10031. In the KPD + CEQ-PLGA-MS and KPD + INJ groups, infected rats were intravenously injected with 12.5 mg/kg body weight CEQ-PLGA-MS and CEQ-INJ, respectively.


Compared to CEQ-INJ treatment group, CEQ-PLGA-MS treatment further decreased the number of bacteria colonies (decreased to 1.94 lg CFU/g) in lung tissues and the levels of inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4 (p < 0.05 or p < 0.01) in bronchoalveolar lavage fluid at 48 h. Consistently, a significant decreases of scores of inflammation severity were showed at 48 h in the KPD + CEQ-PLGA-MS treatment group, compared to the KPD + CEQ-INJ treatment group.


Our results reveal that CEQ-PLGA-MS has the better therapeutic effect than CEQ-INJ for Klebsiella pneumonia lung infections in rats. The vehicle of CEQ-PLGA-MS as the promising alternatives to control the lung infections with the important pathogens.


cefquinome inflammation Klebsiella pneumonia pharmacodynamics poly lactic-co-glycolic acid microspheres 



Bronchoalveolar lavage fluid




CEQ injection


CEQ-loaded PLGA microspheres


Glyceraldehyde-3-phosphate dehydrogenase





K. pneumonia

Klebsiella pneumonia




Poly lactic-co-glycolic acid


Quantitative reverse transcription-PCR


Roswell Park Memorial Institute


Standard deviation


Tumor necrosis factor



This work was supported by the national key research and development plan (NO. 2016YFD0501309) and startup and innovation leader talent plan of Qingdao 15–10–3-15-(41)-zch. The authors declare no conflicts of interest.

Supplementary material

11095_2019_2614_MOESM1_ESM.pdf (14 kb)
ESM 1 (PDF 14.1 kb)


  1. 1.
    Brenwald N, Jevons G, Andrews J, Xiong J, Hawkey P, Wise R. An outbreak of a CTX-M-type beta-lactamase-producing Klebsiella pneumoniae: the importance of using cefpodoxime to detect extended-spectrum beta-lactamases. J Antimicrob Chemother. 2003;51:195–6.CrossRefGoogle Scholar
  2. 2.
    Dubey D, Raza F, Sawhney A, Pandey PA. Klebsiella pneumoniae renal abscess syndrome: a rare case with metastatic involvement of lungs, eye, and brain. Case Rep Infect Dis. 2013;2013:685346.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Yoshida K, Matsumoto T, Tateda K, Uchida K, Tsujimoto S, Yamaguchi K. Induction of interleukin-10 and down-regulation of cytokine production by Klebsiella pneumoniae capsule in mice with pulmonary infection. J Med Microbiol. 2001;50:456–61.CrossRefGoogle Scholar
  4. 4.
    Xiao W, Chen P, Wang R, Dong J. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF. Eur J Appl Physiol. 2013;113:117–25.CrossRefGoogle Scholar
  5. 5.
    Kasravi R, Bolourchi M, Farzaneh N, Seifi H, Barin A, Hovareshti P, et al. Efficacy of conventional and extended intra-mammary treatment of persistent sub-clinical mastitis with cefquinome in lactating dairy cows. Trop Anim Health Prod. 2011;43:1203–10.CrossRefGoogle Scholar
  6. 6.
    Vasseur M, Laurentie M, Rolland J, Perrin-Guyomard A. Low or high doses of cefquinome targeting low or high bacterial inocula cure Klebsiella pneumoniae lung infections but differentially impact the levels of antibiotic resistance in fecal flora. Antimicrob Agents Chemother. 2014;58:1744–8.CrossRefGoogle Scholar
  7. 7.
    Park JT, Strominger JL. Mode of action of penicillin. Science. 1957;125:99–101.CrossRefGoogle Scholar
  8. 8.
    Wang J, Shan Q, Ding H, Liang C, Zeng Z. Pharmacodynamics of cefquinome in a neutropenic mouse thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother. 2014;58:3008–12.CrossRefGoogle Scholar
  9. 9.
    Zhou Y, Zhao D, Yu Y, Yang X, Shi W, Peng Y. Pharmacokinetics, bioavailability and PK/PD relationship of cefquinome for Escherichia coli in beagle dogs. J Vet Pharmacol Ther. 2015;38:543–8.CrossRefGoogle Scholar
  10. 10.
    Guo C, Liao X, Wang M, Wang F, Yan C. In vivo pharmacodynamics of Cefquinome in a neutropenic mouse thigh model of Streptococcus suis serotype 2 at varied initial inoculum sizes. Antimicrob Agents Chemother. 2016;60:1114–20.CrossRefGoogle Scholar
  11. 11.
    Qu S, Zhao L, Zhu J, Wang C, Dai C. Preparation and testing of cefquinome-loaded poly lactic-co-glycolic acid microspheres for lung targeting. Drug deliv. 2017;24:745–51.CrossRefGoogle Scholar
  12. 12.
    Zhang B, Gu X, Li X, Gu M, Zhang N. Pharmacokinetics and ex-vivo pharmacodynamics of cefquinome against Klebsiella pneumonia in healthy dogs. J Vet Pharmacol Ther. 2014;37:367–73.CrossRefGoogle Scholar
  13. 13.
    Suarez S, O'hara P, Kazantseva M, Newcomer CE, Hopfer R. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res. 2001;18:1315–9.CrossRefGoogle Scholar
  14. 14.
    Zhou H, Zhang Y, Biggs D, Manning M. Microparticle-based lung delivery of INH decreases INH metabolism and targets alveolar macrophages. J Control Release. 2005;107:288–99.CrossRefGoogle Scholar
  15. 15.
    Desai K, Schwendeman S. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release. 2013;165:62–74.CrossRefGoogle Scholar
  16. 16.
    Mladenovska K, Kumbaradzi E, Dodov G, Makraduli L, Goracinova K. Biodegradation and drug release studies of BSA loaded gelatin microspheres. Int J Pharm. 2002;242:247–9.CrossRefGoogle Scholar
  17. 17.
    Wu H, Zhang Z, Wu D, Zhao H, Yu K, Hou Z. Preparation and drug release characteristics of Pingyangmycin-loaded dextran cross-linked gelatin microspheres for embolization therapy. J Biomed Mater Res Part B Appl Biomater. 2006;78:56–62.CrossRefGoogle Scholar
  18. 18.
    Bakker-Woudenberg I, de Jong-Hoenderop J, Michel M. Efficacy of antimicrobial therapy in experimental rat pneumonia: effects of impaired phagocytosis. Infect Immun. 1979;25:366–75.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kesteman A, Perrin-Guyomard A, Laurentie M. Emergence of resistant Klebsiella pneumoniae in the intestinal tract during successful treatment of Klebsiella pneumoniae lung infection in rats. Antimicrob Agents Chemother. 2010;54:2960–4.CrossRefGoogle Scholar
  20. 20.
    Long F, Wang Y, Liu L, Zhou J, Cui R, Jiang C. Rapid nongenomic inhibitory effects of glucocorticoids on phagocytosis and superoxide anion production by macrophages. Steroids. 2005;70:55–61.CrossRefGoogle Scholar
  21. 21.
    Dai C, Li J, Tang S, Li J, Xiao X. Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrob Agents Chemother. 2014;58:4075–85.CrossRefGoogle Scholar
  22. 22.
    Mikerov A, Cooper T, Wang G, Hu S. Histopathologic evaluation of lung and extrapulmonary tissues show sex differences in Klebsiella pneumoniae - infected mice under different exposure conditions. Int J Physiol Pathophysiol Pharmacol. 2011;3:176–90.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Tian M, Liu F, Liu H, Zhang Q, Li L, Hou X. Grape seed procyanidins extract attenuates cisplatin-induced oxidative stress and testosterone synthase inhibition in rat testes. Syst Biol Reprod Med. 2018;64:246–59.CrossRefGoogle Scholar
  24. 24.
    Daglia M, Papetti A, Grisoli P, Aceti C, Spini V. Isolation, identification, and quantification of roasted coffee antibacterial compounds. J Agric Food Chem. 2007;55:10208–13.CrossRefGoogle Scholar
  25. 25.
    Du X, Zu S, Chen F, Liu Z, Li X, Yang L. Preparation and characterization of cefquinome sulfate microparticles for transdermal delivery by negative-pressure cavitation antisolvent precipitation. Powder Technol. 2016;294:429–36.CrossRefGoogle Scholar
  26. 26.
    Shan Q, Liang C, Wang J, Li J, Zeng Z. In vivo activity of cefquinome against Escherichia coli in the thighs of neutropenic mice. Antimicrob Agents Chemother. 2014;58:5943–6.CrossRefGoogle Scholar
  27. 27.
    Chi L, Na M, Jung H, Vadevoo S, Kim C. Enhanced delivery of liposomes to lung tumor through targeting interleukin-4 receptor on both tumor cells and tumor endothelial cells. J Control Release. 2015;209:327–36.CrossRefGoogle Scholar
  28. 28.
    Zhang T, Huang B, Wu H, Wu J. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice. J Control Release. 2015;209:260–71.CrossRefGoogle Scholar
  29. 29.
    De Clercq K, Schelfhout C, Bracke M, De Wever O. Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: in vitro and in vivo characterization. Biomaterials. 2016;96:33–46.CrossRefGoogle Scholar
  30. 30.
    Kadam P, Chuan H. Erratum to: Rectocutaneous fistula with transmigration of the suture: a rare delayed complication of vault fixation with the sacrospinous ligament. Int Urogynecol J. 2016;27:505.CrossRefGoogle Scholar
  31. 31.
    Acharya A, Clare-Salzler M, Keselowsky B. A high-throughput microparticle microarray platform for dendritic cell-targeting vaccines. Biomaterials. 2009;30:4168–77.CrossRefGoogle Scholar
  32. 32.
    Aubert-Pouëssel A, Venier-Julienne M, Saulnier P, Sergent M, Benoît J. Preparation of PLGA microparticles by an emulsion-extraction process using glycofurol as polymer solvent. Pharm Res. 2004;21:2384–91.CrossRefGoogle Scholar
  33. 33.
    Freiberg S, Zhu X. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.CrossRefGoogle Scholar
  34. 34.
    Taylor A, Finney-Hayward T, Quint J, Thomas C. Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J. 2010;35:1039–47.CrossRefGoogle Scholar
  35. 35.
    Song H, Li GW, Ye J, Qian YS. Modulation of mouse neutrophil cytokine secretion by Klebsiella pneumoniae. Comp Clin Pathol. 2004;13:14–8.CrossRefGoogle Scholar
  36. 36.
    Cruijsen T, Van Leengoed L, Dekker-Nooren T. Phagocytosis and killing of Actinobacillus pleuropneumoniae by alveolar macrophages and polymorphonuclear leukocytes isolated from pigs. Infect Immun. 1992;60:4867–71.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zamuner S, Zuliani J, Fernandes C, Gutiérrez J. Inflammation induced by Bothrops asper venom: release of proinflammatory cytokines and eicosanoids, and role of adhesion molecules in leukocyte infiltration. Toxicon. 2005;46:806–13.CrossRefGoogle Scholar
  38. 38.
    Turner M, Nedjai B, Hurst T, Pennington D. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843:2563–82.CrossRefGoogle Scholar
  39. 39.
    Zhou H, Yan J, Fang L, Zhang H, Su L, Zhou G. Change and significance of IL-8, IL-4, and IL-10 in the pathogenesis of terminal ileitis in SD rat. Cell Biochem Biophys. 2014;69:327–31.CrossRefGoogle Scholar
  40. 40.
    Dulek D, Newcomb D, Goleniewska K, Cephus J, Zhou W. Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner. Infect Immun. 2014;82:3723–39.CrossRefGoogle Scholar
  41. 41.
    Li F, Cui S, Zha X, Bansal V, Jiang Y. Structure and bioactivity of a polysaccharide extracted from protocorm-like bodies of Dendrobium huoshanense. Int J Biol Macromol. 2015;72:664–72.CrossRefGoogle Scholar
  42. 42.
    Jiao L, Jiang P, Zhang L, Wu M. Antitumor and immunomodulating activity of polysaccharides from Enteromorpha intestinalis. Biotechnol Bioprocess Eng. 2010;15:421–8.CrossRefGoogle Scholar
  43. 43.
    Im S, Kim K, Ki H, Lee K, Shin E. Processed Aloe vera gel ameliorates cyclophosphamide-induced immunotoxicity. Int J Mol Sci. 2014;15:19342–54.CrossRefGoogle Scholar
  44. 44.
    Bethea J, Nagashima H, Acosta M, Briceno C, Gomez F. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma. 1999;16:851–63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shaoqi Qu
    • 1
    • 2
  • Cunchun Dai
    • 1
    • 2
  • Fenfang Yang
    • 1
    • 2
  • Tingting Huang
    • 1
    • 2
  • Zhihui Hao
    • 1
    • 2
    Email author
  • Qihe Tang
    • 1
    • 2
  • Haixia Wang
    • 1
    • 2
  • Yanping Zhang
    • 1
    • 2
  1. 1.College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdaoChina
  2. 2.National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical TechnologyQingdaoChina

Personalised recommendations