Effects of Temperature and Ionic Strength of Dissolution Medium on the Gelation of Amorphous Lurasidone Hydrochloride

  • Weili Heng
  • Yuanfeng Wei
  • Shengyan Zhou
  • Di Ma
  • Yuan Gao
  • Jianjun ZhangEmail author
  • Shuai QianEmail author
Research Paper



Amorphous lurasidone hydrochloride (LH) showed decreased dissolution behavior in comparison to crystalline LH owing to gelation during dissolution as reported in our previous study. The current study aims to investigate external factors including temperature and ionic strength on the gelation and hence the dissolution of amorphous LH.


Dissolution tests of amorphous LH were performed under different temperatures and buffer ionic strengths. The formed gels were characterized by rheology study, texture analysis, PLM, SEM, DSC, XRPD and FTIR.


With the increase of temperature and ionic strength of medium, the dissolution of amorphous LH decreased, while the strength, hardness and adhesiveness of in situ formed gel enhanced. Amorphous LH converted into its crystalline state during dissolution and the crystallization rate was affected by medium conditions. With medium temperature increasing from 30°C to 45°C, the gel microstructure changed from interconnecting fibrillar network to spherical particle aggregate. On the other hand, the formed spherulitic gel aggregate exhibited increased particle size when increasing the ionic strength of medium.


With increase of temperature and ionic strength, the gel strength of in situ formed gel from amorphous LH enhanced with more compact microstructure, subsequently leading to decreased dissolution profiles.


Lurasidone hydrochloride Amorphous gelation temperature ionic strength 



Biopharmaceutics Classification System


Differential scanning calorimetry


Fourier transform infrared spectroscopy


Hydroxypropyl methylcellulose


Lurasidone hydrochloride


Polarized light microscopy


Scanning electron microscopy


X-ray powder diffraction



This research was supported by National Natural Science Foundation of China (81,703,712, 81,773,675, 81,873,012), “Double First-Class” University Project (CPU2018GY11, CPU2018GY27), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Province Double Innovation Talent Program (2015), Postgraduate Research & Practice Innovation Program of Jiangsu Province. The authors declare no competing financial interest.

Supplementary material

11095_2019_2611_MOESM1_ESM.docx (606 kb)
ESM 1 (DOCX 606 kb)


  1. 1.
    Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2012;17(9–10):486–95.PubMedGoogle Scholar
  2. 2.
    Engers D, Teng J, Jimenez-Novoa J, Gent P, Hossack S, Campbell C, et al. A solid-state approach to enable early development compounds: selection and animal bioavailability studies of an itraconazole amorphous solid dispersion. J Pharm Sci. 2010;99(9):3901–22.PubMedGoogle Scholar
  3. 3.
    Jójárt-Laczkovich O, Szabó-Révész P. Amorphization of a crystalline active pharmaceutical ingredient and thermoanalytical measurements on this glassy form. J Therm Anal Calorim. 2010;102(1):243–7.Google Scholar
  4. 4.
    Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42.PubMedGoogle Scholar
  5. 5.
    Zhang K, Yu H, Luo Q, Yang S, Lin X, Zhang Y, et al. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension. Eur J Pharm Biopharm. 2013;85(3 Pt B):1285–92.PubMedGoogle Scholar
  6. 6.
    Alonzo DE, Zhang GG, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.PubMedGoogle Scholar
  7. 7.
    Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.PubMedGoogle Scholar
  8. 8.
    Chawla G, Bansal AK. A comparative assessment of solubility advantage from glassy and crystalline forms of a water-insoluble drug. Eur J Pharm Sci. 2007;32(1):45–57.PubMedGoogle Scholar
  9. 9.
    Kim JS, Kim MS, Park HJ, Jin SJ, Lee S, Hwang SJ. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm. 2008;359(1–2):211–9.PubMedGoogle Scholar
  10. 10.
    Zhao QF, Wang TY, Wang J, Zheng L, Jiang TY, Cheng G, et al. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol. Appl Surf Sci. 2011;257(23):10126–10,133.Google Scholar
  11. 11.
    Hamaura T, Kusai A, Nishimura K. Gel formation of cefpodoxime proxetil. Stp Pharma Sci. 1995;5(4):324–31.Google Scholar
  12. 12.
    Law D, Krill SL, Schmitt EA, Fort JJ, Qiu Y, Wang W, et al. Physicochemical considerations in the preparation of amorphous ritonavir-poly(ethylene glycol) 8000 solid dispersions. J Pharm Sci. 2001;90(8):1015–25.PubMedGoogle Scholar
  13. 13.
    Meulenaar J, Beijnen JH, Schellens JH, Nuijen B. Slow dissolution behaviour of amorphous capecitabine. Int J Pharm. 2013;441(1–2):213–7.PubMedGoogle Scholar
  14. 14.
    Fujiki S, Iwao Y, Kobayashi M, Miyagishima A, Itai S. Stabilization mechanism of clarithromycin tablets under gastric pH conditions. Chem Pharm Bull. 2011;59(5):553–8.PubMedGoogle Scholar
  15. 15.
    Noguchi S, Takiyama K, Fujiki S, Iwao Y, Miura K, Itai S. Polymorphic transformation of antibiotic clarithromycin under acidic condition. J Pharm Sci. 2014;103(2):580–6.PubMedGoogle Scholar
  16. 16.
    Inukai K, Takiyama K, Noguchi S, Iwao Y, Itai S. Effect of gel formation on the dissolution behavior of clarithromycin tablets. Int J Pharm. 2017;521(1–2):33–9.PubMedGoogle Scholar
  17. 17.
    Furitsu H, Suzuki Y. Composition medicamenteuse. 2006. WO2006030826A1.Google Scholar
  18. 18.
    Pang Z, Wei Y, Wang N, Zhang J, Gao Y, Qian S. Gel formation of puerarin and mechanistic study during its cooling process. Int J Pharm. 2018;548(1):625–35.PubMedGoogle Scholar
  19. 19.
    Xing B, Yu CW, Chow KH, Ho PL, Fu D, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc. 2002;124(50):14846–14,847.PubMedGoogle Scholar
  20. 20.
    Flory PJ. Introductory lecture. Faraday Discuss Chem Soc. 1974;57(5):7–18.Google Scholar
  21. 21.
    Tanaka T. Gels Sci Am. 1981;244(1):124–36 138.PubMedGoogle Scholar
  22. 22.
    Terech P, Wade RH. The relationship between a dried and native steroid gel. J Colloid Interface Sci. 1988;125:542–51.Google Scholar
  23. 23.
    Schott H. Kinetics of swelling of polymers and their gels. J Pharm Sci. 1992;81(5):467–70.PubMedGoogle Scholar
  24. 24.
    Kristl J, Smidkorbar J, Struc E, Schara M, Rupprecht H. Hydrocolloids and gels of chitosan as drug carriers. Int J Pharm. 1993;99(1):13–9.Google Scholar
  25. 25.
    Hayakawa E, Furuya K, Kuroda T, Moriyama M, Kondo A. Studies on the dissolution behavior of doxorubicin hydrochloride freeze-dried product. Chem Pharm Bull. 1990;38(12):3434–9.Google Scholar
  26. 26.
    George M, Weiss RG. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res. 2006;39(8):489–97.PubMedGoogle Scholar
  27. 27.
    Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev. 1997;97(8):3133–59.PubMedGoogle Scholar
  28. 28.
    Qian S, Wang S, Li Z, Wang X, Ma D, Liang S, et al. Charge-assisted bond N(+)H mediates the gelation of amorphous lurasidone hydrochloride during dissolution. Int J Pharm. 2017;518(1–2):335–41.PubMedGoogle Scholar
  29. 29.
    Mittal A, Yadav M, Choudhary D, Shrivastava B. Enhancement of solubility of lurasidone HCl using solid dispersion technique. Int J Res Ayurveda Pharm. 2014;5(5):632–7.Google Scholar
  30. 30.
    Sanford M. Lurasidone: in the treatment of schizophrenia. CNS Drugs. 2013;27(1):67–80.PubMedGoogle Scholar
  31. 31.
    Lee KR, Chae YJ, Koo TS. Pharmacokinetics of lurasidone, a novel atypical anti-psychotic drug, in rats. Xenobiotica. 2011;41(12):1100–7.PubMedGoogle Scholar
  32. 32.
    Qian S, Heng W, Wei Y, Zhang J, Gao Y. Coamorphous lurasidone hydrochloride-saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior. Cryst Growth Des. 2015;15(6):2920–8.Google Scholar
  33. 33.
    Qian S, Li Z, Heng W, Liang S, Ma D, Gao Y, et al. Charge-assisted intermolecular hydrogen bond formed in coamorphous system is important to relieve the pH-dependent solubility behavior of lurasidone hydrochloride. RSC Adv. 2016;6(108):106396–106,412.Google Scholar
  34. 34.
    Treptow RS. Le Châtelier’s principle applied to the temperature dependence of solubility. J Chem Educ. 1984;61(6):499–502.Google Scholar
  35. 35.
    Imaizumi H, Nambu N, Nagai T. Stability and several physical properties of amorphous and crystalline forms of indomethacin. Chem Pharm Bull. 1980;28(9):2565–9.PubMedGoogle Scholar
  36. 36.
    Sato T, Okada A, Sekiguchi K, Tsuda Y. Difference in physico-pharmaceutical properties between crystalline and non crystalline 9,3″-diacetylmidecamycin. Chem Pharm Bull. 1981;29(9):2675–82.Google Scholar
  37. 37.
    Babu JS, Mondal C, Sengupta S, Karmakar S. Excess vibrational density of states and the brittle to ductile transition in crystalline and amorphous solids. Soft Matter. 2016;12(4):1210–8.PubMedGoogle Scholar
  38. 38.
    Lau KC, Dunlap BI. Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids. J Phys Condens Matter. 2011;23(3).PubMedGoogle Scholar
  39. 39.
    Hancock BC, Zograf G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.PubMedGoogle Scholar
  40. 40.
    Hancock BC, Zografi G. The relationship between the glass-transition temperature and the water-content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471–7.PubMedGoogle Scholar
  41. 41.
    Andronis V, Zografi G. Molecular mobility of supercooled amorphous indomethacin, determined by dynamic mechanical analysis. Pharm Res. 1997;14(4):410–4.PubMedGoogle Scholar
  42. 42.
    Collins KD. Charge density-dependent strength of hydration and biological structure. Biophys J. 1997;72(1):65–76.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Asare-Addo K, Conway BR, Larhrib H, Levina M, Rajabi-Siahboomi AR, Tetteh J, et al. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices. Colloids Surf B: Biointerfaces. 2013;111:384–91.PubMedGoogle Scholar
  44. 44.
    Porumb H. The solution spectroscopy of drugs and the drug-nucleic acid interactions. Prog Biophys Mol Biol. 1978;34(3):175–95.PubMedGoogle Scholar
  45. 45.
    Peddireddy KR, Capron I, Nicolai T, Benyahia L. Gelation kinetics and network structure of cellulose nanocrystals in aqueous solution. Biomacromolecules. 2016;17(10):3298–304.PubMedGoogle Scholar
  46. 46.
    Hayakawa E, Furuya K, Ueno H, Kuroda T, Moriyama M, Kondo A. Visible absorption and proton nuclear magnetic resonance studies on the self-association of doxorubicin in aqueous solution. Chem Pharm Bull. 1991;39(4):1009–12.Google Scholar
  47. 47.
    Wang L, Shi X, Wang J. A temperature-responsive supramolecular hydrogel: preparation, gel-gel transition and molecular aggregation. Soft Matter. 2018;14(16):3090–5.PubMedGoogle Scholar
  48. 48.
    Liu XY, Sawant PD. Mechanism of the formation of self-organized microstructures in soft functional materials. Adv Mater. 2002;14(6):421–6.Google Scholar
  49. 49.
    Lau MH, Tang J, Paulson AT. Texture profile and turbidity of gellan/gelatin mixed gels. Food Res Int. 2000;33(8):665–71.Google Scholar
  50. 50.
    Huang M, Kennedy JF, Li B, Xu X, Xie BJ. Characters of rice starch gel modified by gellan, carrageenan, and glucomannan: A texture profile analysis study. Carbohydr Polym. 2007;69(3):411–8.Google Scholar
  51. 51.
    Sanderson GR. Gellan gum. In: Harris P, editor. Food gels. New York, USA: Elsevier; 1990. p. 201–32.Google Scholar
  52. 52.
    Wolf CL, Beach S, LaVelle WM, Clark RC. Gellan gum/gelation blends. 1989. US4876105.Google Scholar
  53. 53.
    Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83(12):1700–5.PubMedGoogle Scholar
  54. 54.
    Wang R, Liu XY, Xiong J, Li J. Real-time observation of fiber network formation in molecular organogel: supersaturation-dependent microstructure and its related rheological property. J Phys Chem B. 2006;110(14):7275–80.PubMedGoogle Scholar
  55. 55.
    Liu XY, Sawant PD, Tan WB, Noor IB, Pramesti C, Chen BH. Creating new supramolecular materials by architecture of three-dimensional nanocrystal fiber networks. J Am Chem Soc. 2002;124(50):15055–15,063.PubMedGoogle Scholar
  56. 56.
    Wang RY, Liu XY, Narayanan J, Xiong JY, Li JL. Architecture of fiber network: from understanding to engineering of molecular gels. J Phys Chem B. 2006;110(51):25797–25,802.PubMedGoogle Scholar
  57. 57.
    Okubo T, Tsuchida A, Kato T. Nucleation and growth processes in the colloidal crystallization of silica spheres in the presence of sodium chloride as studied by reflection spectroscopy. Colloid Polym Sci. 1999;277(2–3):191–6.Google Scholar
  58. 58.
    Bhamidi V, Skrzypczak-Jankun E, Schall CA. Dependence of nucleation kinetics and crystal morphology of a model protein system on ionic strength. J Cryst Growth. 2001;232(1–4):77–85.Google Scholar
  59. 59.
    Cerdeira M, Puppo MC, Martini S, Herrera ML. Effects of salts on crystallization kinetics and rheological behavior of concentrated alpha,alpha-trehalose solutions. J Food Sci. 2003;68(9):2644–50.Google Scholar
  60. 60.
    Longinotti MP, Mazzobre MF, Buera MP, Corti HR. Effect of salts on the properties of aqueous sugar systems in relation to biomaterial stabilization - Part 2. Sugar crystallization rate and electrical conductivity behavior. Phys Chem Chem Phys. 2002;4(3):533–40.Google Scholar
  61. 61.
    Grinshtein J, Frydman L. Solid state separated-local-field NMR spectroscopy on half-integer quadrupolar nuclei: principles and applications to borane analysis. J Am Chem Soc. 2003;125(24):7451–60.PubMedGoogle Scholar
  62. 62.
    Heinz A, Strachan CJ, Gordon KC, Rades T. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy. J Pharm Pharmacol. 2009;61(8):971–88.PubMedGoogle Scholar
  63. 63.
    Talor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.Google Scholar
  64. 64.
    Gao Y, Gesenberg C, Zheng W. Oral formulations for preclinical studies: principle, design, and development considerations. In: Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV, editors. Developing solid oral dosage forms: pharmaceutical theory and practice. London: Academic Press; 2017. p. 455–95.Google Scholar
  65. 65.
    Raina SA, Zhang GGZ, Alonzo DE, Wu J, Zhu D, Catron ND, et al. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. J Pharm Sci. 2014;103:2736–48.PubMedGoogle Scholar
  66. 66.
    Van Eerdenbrugh B, Raina S, Hsieh Y-L, Augustijns P, Taylor L. Classification of the crystallization behavior of amorphous active pharmaceutical ingredients in aqueous environments. Pharm Res. 2014;31:969–82.PubMedGoogle Scholar
  67. 67.
    Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev. 2004;104(3):1201–17.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PharmacyChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingPeople’s Republic of China

Personalised recommendations