Neutrophil-Mediated Delivery of Dexamethasone Palmitate-Loaded Liposomes Decorated with a Sialic Acid Conjugate for Rheumatoid Arthritis Treatment

  • Ling Hu
  • Xiang Luo
  • Songlei Zhou
  • Jingyang Zhu
  • Mingyue Xiao
  • Cong Li
  • Huangliang Zheng
  • Qiujun Qiu
  • Chaoyang Lai
  • Xinrong Liu
  • Yihui DengEmail author
  • Yanzhi SongEmail author
Research Paper



The aim of this research was to design dexamethasone palmitate (DP) loaded sialic acid modified liposomes, with the eventual goal of using peripheral blood neutrophils (PBNs) that carried drug-loaded liposomes to improve the therapeutic capacity for rheumatoid arthritis (RA).


A sialic acid – cholesterol conjugate (SA-CH) was synthesized and anchored on the surface of liposomal dexamethasone palmitate (DP-SAL). The physicochemical characteristics and in vitro cytotoxicity of liposomes were evaluated. Flow cytometry and confocal laser scanning microscopy were utilized to investigate the accumulation of liposomes in PBNs. The adjuvant-induced arthritis was adopted to investigate the targeting ability and anti-inflammatory effect of DP loaded liposomes.


Both DP-CL and DP-SAL existed an average size less than 200 nm with remarkably high encapsulation efficiencies more than 90%. In vitro and in vivo experiments manifested SA-modified liposomes provided a reinforced accumulation of DP in PBNs. As well, DP-SAL displayed a greater degree of accumulation in the joints and a stronger anti-inflammatory effect in terms of RA suppression.


SA-modified liposomal DP was a promising candidate for RA-targeting treatment through the neutrophil-mediated drug delivery system.


L-selectin peripheral blood neutrophils rheumatoid arthritis rheumatoid arthritis-targeting treatment sialic acid-cholesterol conjugate 



Cell Counting Kit-8


Confocal laser scanning microscopy


1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide


Dexamethasone palmitate


N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride


Enzyme linked immunosorbent assay


Flow cytometry


Fluorescein isothiocyanate


Hydrogenated soy phosphatidylcholine




Peripheral blood neutrophils


Rheumatoid arthritis


A sialic acid-cholesterol conjugate


Tumor-necrosis factor



  1. 1.
    Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–61.CrossRefGoogle Scholar
  2. 2.
    Bax M, Heemst JV, Huizinga TWJ, Toes REM. Genetics of rheumatoid arthritis: what have we learned? Immunogenetics. 2011;63:459–66.CrossRefGoogle Scholar
  3. 3.
    Kourilovitch M, Galarza-Maldonado C, Ortiz-Prado E. Diagnosis and classification of rheumatoid arthritis. J Autoimmun. 2014;48-49:26–30.CrossRefGoogle Scholar
  4. 4.
    Scottand DL, Kingsley GH. Rheumatoid arthritis. Die Med Welt. 1975;26:2250–5.Google Scholar
  5. 5.
    Smolenand JS, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov. 2003;2:473–88.CrossRefGoogle Scholar
  6. 6.
    Yang MD, Feng XR, Ding JX, Chang F, Chen XS. Nanotherapeutics relieve rheumatoid arthritis. J Control Release. 2017;252:108–24.CrossRefGoogle Scholar
  7. 7.
    IBand M. S. G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–42.CrossRefGoogle Scholar
  8. 8.
    B.T. Wipkeand P.M. Allen. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol (Baltimore, Md : 1950) 167:(2001).Google Scholar
  9. 9.
    Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology. 2010;49:1618–31.CrossRefGoogle Scholar
  10. 10.
    Powelland DR, Huttenlocher A. Neutrophils in the tumor microenvironment. Trends Immunol. 2016;37:41–52.CrossRefGoogle Scholar
  11. 11.
    Kruger P, Saffarzadeh M, Weber ANR, Rieber N, Radsak M, von Bernuth H, et al. Neutrophils: between host Defence, immune modulation, and tissue injury. PLoS Pathog. 2015;11.CrossRefGoogle Scholar
  12. 12.
    Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11:519–31.CrossRefGoogle Scholar
  13. 13.
    Chu DF, Gao J, Wang ZJ. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano. 2015;9:11800–11.CrossRefGoogle Scholar
  14. 14.
    Engblom C, Pfirschke C, Zilionis R, Martins JD, Bos SA, Courties G, et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils. Science. 2017;358:eaal5081.CrossRefGoogle Scholar
  15. 15.
    Su YX, Xie ZW, Kim GB, Dong C, Yang J. Design strategies and applications of circulating cell-mediated drug delivery systems. Acs Biomateri Sci Eng. 2015;1:201–17.CrossRefGoogle Scholar
  16. 16.
    Fu JJ, Wang D, Mei D, Zhang HR, Wang ZY, He B, et al. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release. 2015;204:11–9.CrossRefGoogle Scholar
  17. 17.
    Raffler NA, Rivera-Nieves J, Ley K. L -selectin in inflammation, infection and immunity. Drug Discovery Today Therapeutic Strategies. 2005;2:213–20.CrossRefGoogle Scholar
  18. 18.
    Smolen JE, Petersen TK, Koch C, O'Keefe SJ, Hanlon WA, Seo S, et al. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J Biol Chem. 2000;275:–15876, 15884.CrossRefGoogle Scholar
  19. 19.
    Coussensand LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.CrossRefGoogle Scholar
  20. 20.
    Zhang T, She Z, Huang Z, Li J, Luo X, Deng Y. Application of sialic acid/polysialic acid in the drug delivery systems. Asian J Pharm Sci. 2014;9:75–81.CrossRefGoogle Scholar
  21. 21.
    Smoakand KA, Cidlowski JA. Mechanisms of glucocorticoid receptor signaling during inflammation. Mech Ageing Dev. 2004;125:697–706.CrossRefGoogle Scholar
  22. 22.
    Allenand TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.CrossRefGoogle Scholar
  23. 23.
    Ozbakir B, Crielaard BJ, Metselaar JM, Storm G, Lammers T. Liposomal corticosteroids for the treatment of inflammatory disorders and cancer. J Control Release. 2014;190:624–36.CrossRefGoogle Scholar
  24. 24.
    Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Control Release. 2016;230:64–72.CrossRefGoogle Scholar
  25. 25.
    Zhang X, Goncalves R, Mosser DM. The Isolation and Characterization of Murine Macrophages. In: The isolation and characterization of murine macrophages: John Wiley & Sons, Inc; 2008.Google Scholar
  26. 26.
    Zhou S, Zhang T, Peng B, Luo X, Liu X, Hu L, et al. Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity. Int J Pharm. 2017;523:203–16.CrossRefGoogle Scholar
  27. 27.
    Sun J, Song Y, Lu M, Lin X, Liu Y, Zhou S, et al. Evaluation of the antitumor effect of dexamethasone palmitate and doxorubicin co-loaded liposomes modified with a sialic acid-octadecylamine conjugate. Eur J Pharm Sci. 2016;93:177–83.CrossRefGoogle Scholar
  28. 28.
    Anderson R, Franch A, Castell M, Perez-Cano FJ, Bräuer R, Pohlers D, et al. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis. Arthritis Res Ther. 2010;12:R147.CrossRefGoogle Scholar
  29. 29.
    Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51:691.PubMedGoogle Scholar
  30. 30.
    Ireneand C, Giuseppe B. Endocytosis at the nanoscale. Chem Soc Rev. 2012;41:2718–39.CrossRefGoogle Scholar
  31. 31.
    Von Andrian UH, Hansell P, Chambers JD, Berger EM, Torres FI, Butcher EC, et al. L-selectin function is required for beta 2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo. Am J Phys. 1992;263:1034–44.Google Scholar
  32. 32.
    Schleiffenbaum B, Spertini O, Tedder TF. Soluble L-selectin is present in human plasma at high levels and retains functional activity. J Cell Biol. 1992;119:229–38.CrossRefGoogle Scholar
  33. 33.
    Kallinteri P, Antimisiaris SG, Karnabatidis D, Kalogeropoulou C, Tsota I, Siablis D. Dexamethasone incorporating liposomes: an in vitro study of their applicability as a slow releasing delivery system of dexamethasone from covered metallic stents. Biomaterials. 2002;23:4819–26.CrossRefGoogle Scholar
  34. 34.
    Choi SH, Byeon HJ, Choi JS, Thao L, Kim I, Lee ES, et al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J Control Release. 2015;197:199–207.CrossRefGoogle Scholar
  35. 35.
    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.PubMedGoogle Scholar
  36. 36.
    Yuan F, Quan LD, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev. 2012;64:1205–19.CrossRefGoogle Scholar
  37. 37.
    Kolaczkowskaand E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13:159–75.CrossRefGoogle Scholar
  38. 38.
    Pham CTN. Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnology. 2011;3:607–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ling Hu
  • Xiang Luo
  • Songlei Zhou
    • 1
  • Jingyang Zhu
    • 1
  • Mingyue Xiao
    • 1
  • Cong Li
    • 1
  • Huangliang Zheng
    • 1
  • Qiujun Qiu
    • 1
  • Chaoyang Lai
    • 1
  • Xinrong Liu
    • 1
  • Yihui Deng
    • 1
    Email author
  • Yanzhi Song
    • 1
    Email author
  1. 1.College of PharmacyShenyang Pharmaceutical UniversityShenyangChina

Personalised recommendations