Advertisement

Pharmaceutical Research

, 36:25 | Cite as

Glaucoma - Next Generation Therapeutics: Impossible to Possible

  • Christopher M. Adams
  • Rebecca Stacy
  • Nalini Rangaswamy
  • Chad Bigelow
  • Cynthia L. Grosskreutz
  • Ganesh PrasannaEmail author
Expert Review
  • 431 Downloads
Part of the following topical collections:
  1. Ophthalmic Drug Discovery and Development

Abstract

The future of next generation therapeutics for glaucoma is strong. The recent approval of two novel intraocular pressure (IOP)-lowering drugs with distinct mechanisms of action is the first in over 20 years. However, these are still being administered as topical drops. Efforts are underway to increase patient compliance and greater therapeutic benefits with the development of sustained delivery technologies. Furthermore, innovations from biologics- and gene therapy-based therapeutics are being developed in the context of disease modification, which are expected to lead to more permanent therapies for patients. Neuroprotection, including the preservation of retinal ganglion cells (RGCs) and optic nerve is another area that is actively being explored for therapeutic options. With improvements in imaging technologies and determination of new surrogate clinical endpoints, the therapeutic potential for translation of neuroprotectants is coming close to clinical realization. This review summarizes the aforementioned topics and other related aspects.

Key words

clinical trials glaucoma IOP lowering neuroprotection sustained delivery imaging 

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

All animal-related procedures were conducted according to protocols approved by Novartis Institutional Animal Care and Use Committee in compliance with Animal Welfare Act regulations and the Guide for the Care and Use of Laboratory Animals and were in adherence to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Authors wish to thank Chenying Guo for mRNA expression data for PTGFR, EP2 and EP4 in rabbit ocular tissues. All authors are employees of Novartis Institutes for Biomedical Research (NIBR) and own Novartis stock. Relevant studies were performed with funding from NIBR.

References

  1. 1.
    Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–34.PubMedGoogle Scholar
  2. 2.
    Schehlein EM, Novack G, Robin AL. New pharmacotherapy for the treatment of glaucoma. Expert Opin Pharmacother. 2017;18(18):1939–46.PubMedGoogle Scholar
  3. 3.
    MacKean JM, Elkington AR. Compliance with treatment of patients with chronic open-angle glaucoma. Br J Ophthalmol. 1983;67(1):46–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gurwitz JH, Glynn RJ, Monane M, Everitt DE, Gilden D, Smith N, et al. Treatment for glaucoma: adherence by the elderly. Am J Public Health. 1993;83(5):711–6.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Okeke CO, Quigley HA, Jampel HD, Ying GS, Plyler RJ, Jiang Y, et al. Adherence with topical glaucoma medication monitored electronically the Travatan dosing aid study. Ophthalmology. 2009;116(2):191–9.PubMedGoogle Scholar
  6. 6.
    Newman-Casey PA, Robin AL, Blachley T, Farris K, Heisler M, Resnicow K, et al. The Most common barriers to Glaucoma medication adherence: a cross-sectional survey. Ophthalmology. 2015;122(7):1308–16.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Stone JL, Robin AL, Novack GD, Covert DW, Cagle GD. An objective evaluation of Eyedrop instillation in patients with Glaucoma. Arch Ophthalmol. 2009;127(6):732–6.PubMedGoogle Scholar
  8. 8.
    Olthoff CM, Schouten JS, van de Borne BW, Webers CA. Noncompliance with ocular hypotensive treatment in patients with glaucoma or ocular hypertension an evidence-based review. Ophthalmology. 2005;112(6):953–61.PubMedGoogle Scholar
  9. 9.
    Jampel H. Target IOP in clinical practice. In: Weinreb RN, Brandt JD, Garway-Heath D, Madeiros FA, editors. Intraocular pressure. Amsterdam: Kugler Publications; 2007. p. 121–5.Google Scholar
  10. 10.
    Prum BE Jr, Rosenberg LF, Gedde SJ, Mansberger SL, Stein JD, Moroi SE, et al. Primary Open-angle glaucoma preferred practice pattern(®) guidelines. Ophthalmology. 2016;123(1):41–111.Google Scholar
  11. 11.
    Asrani S, Zeimer R, Wilensky J, Gieser D, Vitale S, Lindenmuth K. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9(2):134–42.Google Scholar
  12. 12.
    Dunbar GE, Shen BY, Aref AA. The Sensimed triggerfish contact lens sensor: efficacy, safety, and patient perspectives. Clin Ophthalmol. 2017;11:875–82.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Food and Drug Administration. Available from: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm489308.htm (accessed on September 24, 2018).
  14. 14.
    Food and Drug Administration. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=Bimatoprost+Sustained+release+allergan. Last accessed on August 21, 2018).
  15. 15.
    Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–88.PubMedGoogle Scholar
  16. 16.
    Nomoto H, Shiraga F, Kuno N, Kimura E, Fujii S, Shinomiya K, et al. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal Administration in Rabbits. Invest Ophthalmol Vis Sci. 2009;50(10):4807–13.PubMedGoogle Scholar
  17. 17.
    Guymer C, Wood JP, Chidlow G, Casson RJ. Neuroprotection in glaucoma: recent advances and clinical translation. Clin Exp Ophthalmol. 2018; (published ahead of print).  https://doi.org/10.1111/ceo.13336.
  18. 18.
    Tanna AP, Johnson M. Rho kinase inhibitors as a novel treatment for Glaucoma and ocular hypertension. Ophthalmology. 2018;125(11):1741–56.PubMedGoogle Scholar
  19. 19.
    Prasanna G, Li B, Mogi M, Rice DS. Pharmacology of novel intraocular pressure-lowering targets that enhance conventional outflow facility: pitfalls, promises and what lies ahead? Eur J Pharmacol. 2016;787:47–56.PubMedGoogle Scholar
  20. 20.
    Cavet ME, DeCory HH. The role of nitric oxide in the intraocular Pressure lowering efficacy of Latanoprostene Bunod: review of nonclinical studies. J Ocul Pharmacol Ther. 2018;34(1–2):52–60.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Cavet ME, Vittitow JL, Impagnatiello F, Ongini E, Bastia E. Nitric oxide (NO): an emerging target for the treatment of glaucoma. Invest Ophthalmol Vis Sci. 2014;55(8):5005–15.PubMedGoogle Scholar
  22. 22.
    Wang SK, Chang RT. An emerging treatment option for glaucoma: rho kinase inhibitors. Clin Ophthalmol. 2014;8:883–90.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Alm A. Latanoprost in the treatment of glaucoma. Clin Ophthalmol. 2014;8:1967–85.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Shahidullah M, Mandal A, Wei G, Delamere NA. Nitric oxide regulation of Na, K-ATPase activity in ocular ciliary epithelium involves Src family kinase. J Cell Physiol. 2014;229(3):343–52.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Krauss AH, Impagnatiello F, Toris CB, Gale DC, Prasanna G, Borghi V, et al. Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating prostaglandin F2α agonist, in preclinical models. Exp Eye Res. 2011;93(3):250–5.PubMedGoogle Scholar
  26. 26.
    Saeki T, Tsuruga H, Aihara M, Araie M, Rittenhouse K. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci. 2009;50(13):4064.Google Scholar
  27. 27.
    Hoy SM. Latanoprostene Bunod ophthalmic solution 0.024%: a review in open-angle Glaucoma and ocular hypertension. Drugs. 2018;78(7):773–80.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Weinreb RN, Ong T, Scassellati Sforzolini B, Vittitow JL, Singh K, Kaufman PL. A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study. Br J Ophthalmol. 2015;99(6):738–45.PubMedGoogle Scholar
  29. 29.
    Weinreb RN, Scassellati Sforzolini B, Vittitow J, Liebmann J. Latanoprostene Bunod 0.024% versus Timolol maleate 0.5% in subjects with open-angle Glaucoma or ocular hypertension: the APOLLO study. Ophthalmology. 2016;123(5):965–73.PubMedGoogle Scholar
  30. 30.
    Medeiros FA, Martin KR, Peace J, Scassellati Sforzolini B, Vittitow JL, Weinreb RN. Comparison of Latanoprostene Bunod 0.024% and Timolol maleate 0.5% in open-angle Glaucoma or ocular hypertension: the LUNAR study. Am J Ophthalmol. 2016;168:250–9.PubMedGoogle Scholar
  31. 31.
    Kawase K, Vittitow JL, Weinreb RN, Araie M. Long-term safety and efficacy of Latanoprostene Bunod 0.024% in Japanese subjects with open-angle glaucoma or ocular hypertension: the Jupiter study. Adv Ther. 2016;33(9):1612–27.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Inoue K, Setogawa A, Tomita G. Nonresponders to prostaglandin analogs among Normal-tension Glaucoma patients. J Ocul Pharmacol Ther. 2016;32(2):90–6.PubMedGoogle Scholar
  33. 33.
    Enoki M, Saito J, Hara M, Uchida T, Sagara T, Nishida T. Additional reduction in intraocular pressure achieved with latanoprost in normal-tension glaucoma patients previously treated with unoprostone. Jpn J Ophthalmol. 2006;50(4):334–7.PubMedGoogle Scholar
  34. 34.
    Agvald P, Adding LC, Gustafsson LE, Persson MG. Nitric oxide generation, tachyphylaxis and cross-tachyphylaxis from nitrovasodilators in vivo. Eur J Pharmacol. 1999;385(2–3):137–45.PubMedGoogle Scholar
  35. 35.
    Wang RF, Williamson JE, Kopczynski C, Serle JB. Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015;24(1):51–4.PubMedGoogle Scholar
  36. 36.
    Kazemi A, McLaren JW, Kopczynski CC, Heah TG, Novack GD, Sit AJ. The effects of netarsudil ophthalmic solution on aqueous humor dynamics in a randomized study in humans. J Ocul Pharmacol Ther. 2018;34(5):380–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Bacharach J, Dubiner HB, Levy B, Kopczynski CC, Novack GD. Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology. 2015;122(2):302–7.PubMedGoogle Scholar
  38. 38.
    Serle JB, Katz LJ, McLaurin E, Heah T, Ramirez-Davis N, Usner DW, et al. Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: rho kinase elevated iop treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol. 2018;186:116–27.PubMedGoogle Scholar
  39. 39.
    Lewis RA, Levy B, Ramirez N, Kopczynski CC, Usner DW, Novack GD. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100(3):339–44.PubMedGoogle Scholar
  40. 40.
    Grant WM. Tonographic method for measuring the facility and rate of aqueous flow in human eyes. Arch Ophth 19050;44(2):204–214.Google Scholar
  41. 41.
    Saraswathy S, Tan JC, Yu F, Francis BA, Hinton DR, Weinreb RN, et al. Aqueous angiography: real-time and physiologic aqueous humor outflow imaging. PLoS One. 2016;11(1):e0147176.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Huang AS, Li M, Yang D, Wang H, Wang N, Weinreb RN. Aqueous angiography in living nonhuman Primates shows segmental, pulsatile, and dynamic angiographic aqueous humor outflow. Ophthalmology. 2017;124(6):793–803.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Shi G, Fu L, Li X, Jiang C, Zhang Y. Morphological changes in Schlemm's canal in treated and newly diagnosed untreated glaucomatous eyes. Sci China Life Sci. 2014;57(12):1213–7.PubMedGoogle Scholar
  44. 44.
    Yan X, Li M, Chen Z, Zhu Y, Song Y, Zhang H. Schlemm's canal and trabecular meshwork in eyes with primary open angle Glaucoma: a comparative study using high-frequency ultrasound biomicroscopy. PLoS One. 2016;11(1):e0145824.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen Z, Sun J, Li M, Liu S, Chen L, Jing S, et al. Effect of age on the morphologies of the human Schlemm's canal and trabecular meshwork measured with swept-source optical coherence tomography. Eye (Lond). 2018;32:1621–8.Google Scholar
  46. 46.
    Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121(1):48–56.PubMedGoogle Scholar
  47. 47.
    Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385(9975):1295–304.PubMedGoogle Scholar
  48. 48.
    Drance SM. Diurnal variation of intraocular pressure in treated glaucoma. Significance in patients with chronic simple glaucoma. Arch Ophthalmol. 1963;70:302–11.PubMedGoogle Scholar
  49. 49.
    De Moraes CG, Jasien JV, Simon-Zoula S, Liebmann JM, Ritch R. Visual field change and 24-hour IOP-related profile with a contact Lens sensor in treated Glaucoma patients. Ophthalmology. 2016;123(4):744–53.PubMedGoogle Scholar
  50. 50.
    De Moraes CG, Mansouri K, Liebmann JM, Ritch R. Association between 24-hour intraocular Pressure monitored with contact Lens sensor and visual field progression in older adults with Glaucoma. JAMA Ophthalmol. 2018;136(7):779–85.PubMedGoogle Scholar
  51. 51.
    Kim JH, Caprioli J. Intraocular pressure fluctuation: is it important? J Ophthalmic Vis Res. 2018;3(2):170–4.Google Scholar
  52. 52.
    Stein JD, Shekhawat N, Talwar N, Balkrishnan R. Impact of the introduction of generic latanoprost on glaucoma medication adherence. Ophthalmology. 2015;122(4):738–47.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Nordstrom BL, Friedman DS, Mozaffari E, Quigley HA, Walker AM. Persistence and adherence with topical glaucoma therapy. Am J Ophthalmol. 2005;140(4):598–606.PubMedGoogle Scholar
  54. 54.
    Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland D, et al. Predictive factors for glaucomatous visual field progression in the advanced glaucoma intervention study. Ophthalmology. 2004;111(9):1627–35.Google Scholar
  55. 55.
    Quigley HA, Pollack IP, Harbin TS Jr. Long-term clinical trials and selected pharmacodynamics. Arch Ophthalmol. 1975;93(9):771–5.PubMedGoogle Scholar
  56. 56.
    Food and Drug Administration. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=017431 (accessed on September 24, 2018).
  57. 57.
    Liu JHK, Weinreb RN. Monitoring intraocular pressure for 24 h. Br J Ophthalmol. 2011;95:599–600.PubMedGoogle Scholar
  58. 58.
    Szigiato AA, Podbielski DW, Ahmed IIK. Sustained drug delivery for the management of glaucoma. Expert Rev Ophthalmol. 2011;12(2):173–86.Google Scholar
  59. 59.
    Manickavasagam D, Oyewumi MO. Critical assessment of implantable drug delivery devices in glaucoma management. J Drug Deliv. 2013;2013:895013.Google Scholar
  60. 60.
    Aref AA. Sustained drug delivery for glaucoma: current data and future trends. Curr Opin Ophthalmol. 2017;28:169–74.PubMedGoogle Scholar
  61. 61.
    Food and Drug Administration. Available from: https://www.clinicaltrials.gov/ct2/home. (accessed on August 12th 2018).
  62. 62.
    Brandt JD, Sall K, DuBiner H, Benza R, Alster Y, Walker G, et al. Six-month intraocular pressure reduction with a topical bimatoprost ocular insert: results of a phase II randomized controlled study. Ophthalmology. 2016;123(8):1685–94.PubMedGoogle Scholar
  63. 63.
    Perera SA, Ting DS, Nongpiur ME, Chew PT, Aquino MCD, Sng CCA, et al. Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population. Clin Ophthalmol. 2016;10:757–64.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Evans D, Repke C. Safety and efficacy of the latanoprost punctal plug delivery system (L-PPDS) in subjects with ocular hypertension (OH) or Open Angel Glaucoma (OAG). American Academy of Optometry Meeting Abstract 2012; Phoenix, AZ Program Number: 125689.Google Scholar
  65. 65.
    Goldberg DF, Williams RA. Phase 2 study evaluating Safety and efficacy of the latanoprost Punctal plug delivery system (L-PPDS) in subjects with ocular hypertension (OH) or open-angle Glaucoma (OAG). ARVO Annual Meeting Abstract : Invest. Ophthalmol. Vis. Sci. 2012;53(14):5095.Google Scholar
  66. 66.
    Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27(10):2043–53.PubMedGoogle Scholar
  67. 67.
    Boyer DS, Yoon YH, Belfort R Jr, Bandello F, Maturi RK, Augustin AJ, Li XY, Cui H, Hashad Y, Whitcup SM. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 2014;121(10):1904–1914.Google Scholar
  68. 68.
    Lewis RA, Christie WC, Day DG, Craven ER, Walters T, Bejanian M, et al. Bimatoprost sustained-release implants for Glaucoma therapy: 6-month results from a phase I/II clinical trial. Am J Ophthalmol. 2017;175(Mar):137–47.PubMedGoogle Scholar
  69. 69.
    Seal J, Perera S, Coote M, Robinson MR, Hughes PM, Ghebremeskel AN, Burke JA, Attar M. Intracameral administration of a sustained release bimatoprost implant efficiently delivers bimatoprost to target tissue reducing risk of topical prostaglandin analog- associated adverse events. ARVO Annual Meeting Abstract : Invest. Ophthalmol. Vis. Sci. 2016;57(12):3022.Google Scholar
  70. 70.
    Lee SS, Burke J, Shen J, Almazan A, Orilla W, Hughes P, et al. Bimatoprost sustained-release intracameral implant reduces episcleral venous pressure in dogs. Vet Ophthalmol. 2018;21(4):376–81.PubMedGoogle Scholar
  71. 71.
    Navratil T, Garcia A, Verhoeven RS, Trevino L, Gilger BC, Mansberger SL, Budenz DL, Ahmed IIK, Lewis RA, Yerxa BR. Advancing ENV515 (travoprost) intracameral implant into clinical development: nonclinical evaluation of ENV515 in support of first-time-in-human phase 2a clinical study. ARVO Annual Meeting Abstract : Invest. Ophthalmol. Vis. Sci. 2015;56(7):5706.Google Scholar
  72. 72.
    Komaromy, AM, Koehl K, Harman, CD, Stewart SG, Wolinski, N, Norris TN, Valade D, Chekhtman I, Lambert JN, Donohue AC, Tait R. Long-term intraocular Pressure (IOP) control by means of a novel biodegradable intracameral (IC) latanoprost free acid (LFA) implant. ARVO Annual Meeting Abstract : Invest. Ophthalmol. Vis. Sci. 2017;58(8):4591.Google Scholar
  73. 73.
    Mansberger SL, Conley J, Verhoeven RS, Blackwell K, Depenbusch M, Knox T, Walters TR, Ahmad I, Yerxa BR, Navratil T. Interim analysis of low dose ENV515 Travoprost XR with 11 month duration followed by dose escalation and 28 day efficacy evaluation of high dose ENV515. ARVO annual meeting abstract : invest. Ophthalmol. Vis. Sci. 2017;58(8):2110.Google Scholar
  74. 74.
    Koehl K, Harman C, Stewart G, Wolinski N, Norris TN, Valade D, Donohue AC, Chekhtman I, Lambert JN, Tait R, Komaromy AM. Safety of a novel biodegradable intracameral (IC) latanoprost free acid (LFA) implant for long-term intraocular pressure (IOP) control. ARVO Annual Meeting Abstract : Invest. Ophthalmol. Vis. Sci. 2017;58(8):4592.Google Scholar
  75. 75.
    Wong TT, Novack GD, Natarajan JV, Ho CL, Htoon HM, Venkatraman SS. Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv and Transl Res. 2014;4(4):303–9.Google Scholar
  76. 76.
    Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–31.PubMedPubMedCentralGoogle Scholar
  77. 77.
    It was publically reported that study terminated early due to manufacturer not replenishing study site supply of inserts, see: https://clinicaltrials.gov/ct2/show/NCT01180062. Last accessed on August 13, 2018.
  78. 78.
    BioLight Life Sciences Inc. Available from: https://bio-light.co.il/eye-dtm-long-term-controlled-released-drug-delivery-technology/. Last accessed on August 21, 2018.
  79. 79.
    Glaukos Corporation. January 2018. Available from: https://www.slideshare.net/glaukos/glaukos-january-2018-presentation. Last accessed on August 21, 2018.
  80. 80.
    Food and Drug Administration. Available from: https://clinicaltrials.gov/ct2/show/NCT03519386. Last accessed on August 21, 2018.
  81. 81.
    Ozdemir S, Wong TT, Allingham RR, Finkelstein EA. Predicted patient demand for a new delivery system for glaucoma medicine. Medicine (Baltimore). 2017;96(15):e6626.Google Scholar
  82. 82.
    Martínez T, González MV, Roehl I, Wright N, Pañeda C, Jiménez AI. In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of Glaucoma. Mol Ther. 2014;22(1):81–91.PubMedGoogle Scholar
  83. 83.
    Hasenbach K, Bergen TV, Vandewalle E, Groef LD, Van Hove I, Moons L, et al. Potent and selective antisense oligonucleotides targeting the transforming growth factor beta (TGF-β) isoforms in advanced glaucoma: a preclinical evaluation. J Model Ophthalmol. 2016;1(2):20–8.Google Scholar
  84. 84.
    Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, et al. CRISPR-Cas9-based treatment of myocilin associated glaucoma. Proc Natl Acad Sci U S A. 2017;114(42):11199–204.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Yun H, Zhou Y, Wills A, Du Y. Stem cells in the trabecular meshwork for regulating intraocular Pressure. J Ocul Pharmacol Ther. 2016;32(5):253–60.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Zhu W, Jain A, Gramlich OW, Tucker BA, Sheffield VC, Kuehn MH. Restoration of aqueous humor outflow following transplantation of iPSC derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2017;58(4):2054–62.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Moreno-Montañés J, Sádaba B, Ruz V, Gómez-Guiu A, Zarranz J, González MV, et al. Phase I clinical trial of SYL040012, a small interfering RNA targeting β-adrenergic receptor 2, for lowering intraocular Pressure. Mol Ther. 2014;22(1):226–32.PubMedGoogle Scholar
  88. 88.
    Gonzalez V, Palumaa K, Turman K, Muñoz FJ, Jordan J, García J, Ussa F, Antón, A, Gutierrez E. Moreno-Montanes J. Phase 2 of bamosiran (SYL040012), a novel RNAi based compound for the treatment of increased intraocular pressure associated to glaucoma. ARVO Annual Meeting Abstract : Invest. Ophthalmol. Vis. Sci. 2014;55(13):564.Google Scholar
  89. 89.
    Gonzalez V, Moreno-Montanes J, Oll M, Sall KN, Palumaa K, Dubiner H, Turman K, Muñoz-Negrete F, Ruz V, Jimenez AI. Results of phase IIB SYLTAG clinical trial with bamosiran in patients with glaucoma. ARVO Annual Meeting Abstract : Invest. Ophthalmol. Vis. Sci. 2016;57(12):3023.Google Scholar
  90. 90.
    Cordeiro MF, Mead A, Ali RR, Alexander RA, Murray S, Chen C, et al. Novel antisense oligonucleotides targeting TGF-β inhibit in vivo scarring and improve surgical outcome. Gene Ther. 2003;10(1):59–71.PubMedGoogle Scholar
  91. 91.
    Pfeiffer N, Voykov B, Renieri G, Bell K, Richter P, Weigel M, et al. First-in-human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in subjects with open-angle glaucoma undergoing glaucoma filtration surgery. PLoS One. 2017;12(11):e0188899.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Fleenor DL, Shepard AR, Hellberg PE, Jacobson N, Pang IH, Clark AF. TGFbeta2-induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci. 2006;47(1):226–34.PubMedGoogle Scholar
  93. 93.
    Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Thiel MA, Wild A, Schmid MK, Job O, Bochmann F, Loukopoulos V, et al. Penetration of a topically administered anti–tumor necrosis factor alpha antibody fragment into the anterior chamber of the human eye. Ophthalmology. 2013;120(7):1403 1408.Google Scholar
  95. 95.
    Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24(7):939–46.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Shaughnessy AF. Monoclonal antibodies: magic bullets with a hefty price tag. BMJ. 2012;345:e8346.PubMedGoogle Scholar
  97. 97.
    Weinreb RN, Liebmann JM, Cioffi GA, Goldberg I, Brandt JD, Johnson CA, et al. Oral memantine for the treatment of glaucoma: design and results of 2 randomized, placebo-controlled, phase 3 studies. Ophthalmology. 2018; (published ahead of print);125:1874–85.  https://doi.org/10.1016/j.ophtha.2018.06.017.CrossRefPubMedGoogle Scholar
  98. 98.
    Quigley HA. Clinical trials for glaucoma neuroprotection are not impossible. Curr Opin Ophthalmol. 2012;23(2):144–54.PubMedGoogle Scholar
  99. 99.
    Pease ME, Zack DJ, Berlinicke C, Bloom K, Cone F, Wang Y, et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50(5):2194–200.PubMedGoogle Scholar
  100. 100.
    Johnson TV, Bull ND, Martin KR. Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res. 2011;93(2):196–203.PubMedGoogle Scholar
  101. 101.
    Kimura A, Namekata K, Guo X, Harada C, Harada T. Neuroprotection, growth factors and BDNF-TrkB signaling in retinal degeneration. Int J Mol Sci. 2016;17(9):E1584.PubMedGoogle Scholar
  102. 102.
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–78.PubMedGoogle Scholar
  103. 103.
    Tezel G, Yang X, Luo C, Kain AD, Powell DW, Kuehn MH, et al. Oxidative stress and the regulation of complement activation in human glaucoma. Invest Ophthalmol Vis Sci. 2010;51(10):5071–82.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest. 2011;121(4):1429–44.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Mirzaei M, Gupta VB, Chick JM, Greco TM, Wu Y, Chitranshi N, et al. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci Rep. 2017;7(1):12685.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Alzheimer's disease. Neurobiol Aging. 2000;21(3):383–421.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Colafrancesco V, Coassin M, Rossi S, Aloe L. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration. Ann Ist Super Sanita. 2011;47(3):284–9.PubMedGoogle Scholar
  108. 108.
    Wang H, Wang R, Thrimawithana T, Little PJ, Xu J, Feng ZP, et al. The nerve growth factor signaling and its potential as therapeutic target for glaucoma. Biomed Res Int. 2014;2014:759473.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Popova L, Nuñez M, Nguyen BT, Groth SL, Dennis A, Li Z, Khavari T, Wang SY, Chang R, Fisher AC, Goldberg JL. Recombinant human nerve growth factor (rhNGF) eye drops for glaucoma: interim results. ARVO Annual Meeting Abstract : Invest. Ophthalmol. Vis. Sci. 2018;59(9):1241.Google Scholar
  110. 110.
    Hood DC, De Moraes CG. Challenges to the common clinical paradigm for diagnosis of glaucomatous damage with OCT and visual fields. Invest Ophthalmol Vis Sci. 2018;59(2):788–91.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Wu Z, Thenappan A, DSD W, Ritch R, Hood DC. Etecting glaucomatous progression with a region-of-interest approach on optical coherence tomography: a signal-to-noise evaluation. Transl Vis Sci Technol. 2018;7(1):19.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Hood DC, Raza AS, de Moraes CGV, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Fortune B. Optical coherence tomography evaluation of the optic nerve head neuro-retinal rim in glaucoma. Clin Exp Optom. 2018; (published ahead of print).  https://doi.org/10.1111/cxo.12833.
  114. 114.
    Wang B, Nevins JE, Nadler Z, Wollstein G, Ishikawa H, Bilonick RA, et al. In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(13):8270–4.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Lee EJ, Kim TW, Kim JA, Kim JA. Parapapillary deep-layer microvasculature dropout in primary open-angle glaucoma eyes with a parapapillary γ-zone. Invest Ophthalmol Vis Sci. 2017;58(13):5673–80.PubMedGoogle Scholar
  116. 116.
    Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, Steele MR, et al. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci. 2008;28(11):2735–44.PubMedGoogle Scholar
  117. 117.
    Calkins DJ. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res. 2012;31(6):702–19.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Chen MF, Chui TY, Alhadeff P, Rosen RB, Ritch R, Dubra A, et al. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Invest Ophthalmol Vis Sci. 2015;56(1):674–81.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Hood DC, Chen MF, Lee D, Epstein B, Alhadeff P, Rosen RB, et al. Confocal adaptive optics imaging of Peripapillary nerve Fiber bundles: implications for glaucomatous damage seen on Circumpapillary OCT scans. Transl Vis Sci Technol. 2015;4(2):12 eCollection.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Rossi EA, Granger CE, Sharma R, Yang Q, Saito K, Schwarz C, et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc Natl Acad Sci U S A. 2017;114(3):586–91.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc Natl Acad Sci U S A. 2017;114(48):12803–8.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Cordeiro MF, Normando EM, Cardoso MJ, Miodragovic S, Jeylani S, Davis BM, et al. Real-time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain. 2017;140(6):1757–67.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Yap ZL, Verma S, Lee YF, Ong C, Mohla A, Perera SA. Glaucoma related retinal oximetry: a technology update. Clin Ophthalmol. 2018;12:79–84.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Shahidi AM, Hudson C, Tayyari F, Flanagan JG. Retinal oxygen saturation in patients with primary open-angle glaucoma using a non-flash Hypespectral camera. Curr Eye Res. 2017;42(4):557–61.PubMedGoogle Scholar
  125. 125.
    Camp AS, Weinreb RN. Will perimetry be performed to monitor glaucoma in 2025? Ophthalmology. 2017;124(12S):S71–5.PubMedGoogle Scholar
  126. 126.
    De Moraes CG, Hood DC, Thenappan A, Girkin CA, Medeiros FA, Weinreb RN, et al. 24-2 visual fields miss central defects shown on 10-2 tests in Glaucoma suspects, ocular hypertensives, and early Glaucoma. Ophthalmology. 2017;124(10):1449–56.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Wu Z, Medeiros FA. Comparison of visual field point-wise event-based and global trend-based analysis for detecting glaucomatous progression. Transl Vis Sci Technol. 2018;7(4):20.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Traynis I, De Moraes CG, Raza AS, Liebmann JM, Ritch R, Hood DC. Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field. JAMA Ophthalmol. 2014;132(3):291–7.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Grillo LM, Wang DL, Ramachandran R, Ehrlich AC, De Moraes CG, Ritch R, et al. The 24-2 visual field test misses central macular damage confirmed by the 10-2 visual field test and optical coherence tomography. Transl Vis Sci Technol. 2016;5(2):15.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Wu Z, Medeiros FA, Weinreb RN, Zangwill LM. Performance of the 10-2 and 24-2 visual field tests for detecting central visual field abnormalities in glaucoma. Am J Ophthalmol. 2018;196:10–7.PubMedGoogle Scholar
  131. 131.
    Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40(6):1124–36.PubMedGoogle Scholar
  132. 132.
    Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res. 2015;141:164–70.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Wilsey L, Gowrisankaran S, Cull G, Hardin C, Burgoyne CF, Fortune B. Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure. Doc Ophthalmol. 2017;134(2):111–28.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Falsini B, Marangoni D, Salgarello T, Stifano G, Montrone L, Campagna F, et al. Structure-function relationship in ocular hypertension and glaucoma: interindividual and interocular analysis by OCT and pattern ERG. Graefes Arch Clin Exp Ophthalmol. 2008;246(8):1153–62.PubMedGoogle Scholar
  135. 135.
    Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008;49(5):2201–7.PubMedGoogle Scholar
  136. 136.
    Zhang X, Dastiridou A, Francis BA, Tan O, Varma R, Greenfield DS, et al. Comparison of Glaucoma progression detection by optical coherence tomography and visual field. Am J Ophthalmol. 2017;184:63–74.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res. 2015;133:112–25.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Truong TN, Li H, Hong YK, Chen L. Novel characterization and live imaging of Schlemm's canal expressing Prox-1. PLoS One. 2014;9(5):e98245.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Kizhatil K, Gim H, Clark GM, John SW. Sympathetic innervation of the developing aqueous humor drainage structures ARVO Annual Meeting Abstract. Invest Ophthalmol Vis Sci. 2018;59(9):4700.Google Scholar
  140. 140.
    Khawaja AP, Cooke Bailey JN, Wareham NJ, Scott RA, Simcoe M, Igo RP Jr, et al. UK biobank eye and vision consortium; NEIGHBORHOOD consortium. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. Nat Genet. 2018;50(6):778–82.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Gao XR, Huang H, Nannini DR, Fan F, Kim H. Genome-wide association analyses identify new loci influencing intraocular pressure. Hum Mol Genet. 2018;27(12):2205–13.PubMedGoogle Scholar
  142. 142.
    Borrás T. The pathway from genes to gene therapy in glaucoma: a review of possibilities for using genes as glaucoma drugs. Asia Pac J Ophthalmol (Phila). 2017;6(1):80–93.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Global Discovery ChemistryNovartis Institutes for Biomedical Research (NIBR),CambridgeUSA
  2. 2.Translational MedicineOphthalmology, NIBRCambridgeUSA
  3. 3.Ophthalmology ResearchNovartis Institutes for Biomedical ResearchCambridgeUSA

Personalised recommendations