Pharmaceutical Research

, 36:23 | Cite as

Creation of Straight-Chain Cationic Polysaccharide-Based Bile Salt Sequestrants Made from Euglenoid β-1,3-Glucan as Potential Antidiabetic Agents

  • Motonari ShibakamiEmail author
  • Kazuhiko Shibata
  • Akira Akashi
  • Nobuteru Onaka
  • Jun Takezaki
  • Gen Tsubouchi
  • Hiroaki Yoshikawa
Research Paper



Straight-chain polysaccharides have a greater potential of selectively adsorbing hydrophobic bile salts than resin-based bile salt sequesters because of ionic and hydrophobic interactions; hence, they may possess antidiabetic activity. The feasibility of using cationic polysaccharides made from euglenoid β-1,3-glucan (referred to as paramylon) as potential antidiabetic agents was examined by using in vitro and animal experiments.


Cationic straight-chain polysaccharides were synthesized from euglenoid polysaccharide and glycidyltrimethylammonium chloride. The effects of administration of the synthetic polysaccharide on metabolic syndrome-related indicators were examined in high-fat diet-induced obesity mice. The degree of adsorption of bile salts by the polysaccharides was evaluated using spectroscopic analysis.


Administration of the cationic paramylon derivatives significantly reduced body and mesenteric fat weight in high-fat diet-induced obesity mice. A noteworthy effect was that glucagon-like peptide-1 (GLP-1) secretion was approximately three times higher in diet-induced obesity mice receiving cationic paramylon derivatives than in those receiving cellulose as a control.


Our results indicate that these cationic paramylon derivatives are potential GLP-1 secretagogues suitable for further study.

Key Words

antidiabetic agent bile salt sequestrants GLP-1 polysaccharide 



Anionic exchange resin


Degree of substitution


DS of the 2-hydroxy-3-(trimethylammonio)propyl group


Glucagon-like peptide-1


2-hydroxy-3-(trimethylammonio)propyl paramylon


Sodium cholate


Sodium deoxycholate


Sodium glycocholate


Sodium taurocholate


Size exclusion chromatography - multi-angle laser light scattering




Takeda-G protein-receptor-5



  1. 1.
    Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin - glucose and lipid effects. Arch Intern Med. 2008;168(18):1975–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med. 2008;168(14):1531–40.PubMedCrossRefGoogle Scholar
  3. 3.
    Sugimoto-Kawabata K, Shimada H, Sakai K, Suzuki K, Kelder T, Pieterman EJ, et al. Colestilan decreases weight gain by enhanced NEFA incorporation in biliary lipids and fecal lipid excretion. J Lipid Res. 2013;54(5):1255–64.Google Scholar
  4. 4.
    Shang Q, Saumoy M, Holst JJ, Salen G, Xu G. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am J Physiol Gastrointest Liver Physiol. 2010;298(3):G419–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Harach T, Pols TW, Nomura M, Maida A, Watanabe M, Auwerx J, et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep. 2012;2:430.Google Scholar
  6. 6.
    Potthoff MJ, Potts A, He T, Duarte JA, Taussig R, Mangelsdorf DJ, et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol. 2013;304(4):G371–G80.Google Scholar
  7. 7.
    Donnelly D. The structure and function of the glucagon-like peptide-1 receptor and its ligands. Br J Pharmacol. 2012;166(1):27–41.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Little TJ, Pilichiewicz AN, Russo A, Phillips L, Jones KL, Nauck MA, et al. Effects of intravenous glucagon-like peptide-1 on gastric emptying and intragastric distribution in healthy subjects: relationships with postprandial glycemic and insulinemic responses. J Clin Endocrinol Metab. 2006;91(5):1916–23.Google Scholar
  9. 9.
    Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Phys. 1997;273(5 Pt 1):E981–8.Google Scholar
  10. 10.
    Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278(11):9435–40.Google Scholar
  11. 11.
    Morimoto K, Watanabe M, Sugizaki T, Irie J, Itoh H. Intestinal bile acid composition modulates prohormone convertase 1/3 (PC1/3) expression and consequent glp-1 production in male mice. Endocrinology. 2016;157(3):1071–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Davidson MH, Dillon MA, Gordon B, Jones P, Samuels J, Weiss S, et al. Colesevelam hydrochloride (Cholestagel) - a new, potent bile acid sequestrant associated with a low incidence of gastrointestinal side effects. Arch Intern Med. 1999;159(16):1893–900.Google Scholar
  13. 13.
    Out C, Groen AK, Brufau G. Bile acid sequestrants:more than simple resins. Curr Opin Lipidol. 2012;23(1):43–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Santek B, Friehs K, Lotz M, Flaschel E. Production of paramylon, a ss-1,3-glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed-batch and repeated-batch mode of cultivation. Eng Life Sci. 2012;12(1):89–94.CrossRefGoogle Scholar
  15. 15.
    Nichifor M, Cristea D, Carpov A. Sodium cholate sorption on cationic dextran hydrogel microspheres. 1. Influence of the chemical structure of functional groups. Int J Biol Macromol. 2000;28(1):15–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Kazlauske J, Ramanauskiene K, Liesiene J. Binding of bile acids by cellulose-based cationic adsorbents. Cell Chem Technol. 2014;48(1–2):11–7.Google Scholar
  17. 17.
    Mikkelsen MS, Cornali SB, Jensen MG, Nilsson M, Beeren SR, Meier S. Probing interactions between beta-Glucan and bile salts at atomic detail by H-1-C-13 NMR assays. J Agri Food Chem. 2014;62(47):11472–8.CrossRefGoogle Scholar
  18. 18.
    Barras DR, Stone BA. Carbohydrate composition and metabolism. In: Buetow DE, editor. The biology of Euglena, vol. II. New York: Academic Press; 1968. p. 149–87.Google Scholar
  19. 19.
    Shibakami M, Nemoto T, Sohma M. Dependence of dissolution, dispersion, and aggregation characteristics of cationic polysaccharides made from euglenoid β-1,3-glucan on degree of substitution. Cellulose. 2018;25(4):2217–34.CrossRefGoogle Scholar
  20. 20.
    Ogawa K, Tsurugi J, Watanabe T. Complex of gel-forming beta-1,3-D-glucan with Congo-red in alkaline solution. Chemistry Lett. 1972;1(8):689–92.CrossRefGoogle Scholar
  21. 21.
    Weishaupt MW, Hahm HS, Geissner A, Seeberger PH. Automated glycan assembly of branched beta-(1,3)-glucans to identify antibody epitopes. Chem Comm. 2017;53(25):3591–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Shibakami M. Thickening and water-absorbing agent made from euglenoid polysaccharide. Carbohydr Poly. 2017;173:451–64.CrossRefGoogle Scholar
  23. 23.
    Shibakami M, Tsubouchi G, Sohma M, Hayashi M. Synthesis of nanofiber-formable carboxymethylated Euglena-derived β-1,3-glucan. Carbohydr Polym. 2016;152:468–78.PubMedCrossRefGoogle Scholar
  24. 24.
    Hung SC, Bartley G, Young SA, Albers DR, Dielman DR, Anderson WH, et al. Dietary fiber improves lipid homeostasis and modulates adipocytokines in hamsters. J Diabetes. 2009;1(3):194–206.Google Scholar
  25. 25.
    Young SA, Hung SC, Anderson WH, Albers DR, Langhorst ML, Yokoyama W. Effects of cationic hydroxyethyl cellulose on glucose metabolism and obesity in a diet-induced obesity mouse model. J Diabetes. 2012;4(1):85–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Doubilet H. Differential quantitative analysis of bile acids in bile and in duodenal drainage. J Biol Chem. 1936;114(1):289–308.Google Scholar
  27. 27.
    Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med. 1994;121(6):416–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Findlay JBC, Evans WH. Biological membranes: a practical approach. Washington DC: IRL Press; 1987.Google Scholar
  29. 29.
    Detergents NJM. An overview. In: Deutscher MP, editor. Methods in enzymology. Massachusetts: Academic Press; 1990. p. 239–53.Google Scholar
  30. 30.
    Herrema H, Meissner M, van Dijk TH, Brufau G, Boverhof R, Oosterveer MH, et al. Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor- and liver X receptor alpha-controlled metabolic pathways in mice. Hepatology. 2010;51(3):806–16.Google Scholar
  31. 31.
    Benson GM, Alston DR, Bond BC, Gee AN, Glen A, Haynes C, et al. F 97426-a a more potent bile acid sequestrant and hypocholesterolaemic agent than cholestyramine in the hamster. Atherosclerosis. 1993;101(1):51–60.Google Scholar
  32. 32.
    Miettinen TA. Effects of hypolipidemic drugs on bile acid metabolism in man. Adv Lipid Res. 1981;18:65–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Meneghini LF, Orozco-Beltran D, Khunti K, Caputo S, Damçi T, Liebl A, et al. Weight beneficial treatments for type 2 diabetes. J Clin Endocrinol Metab. 2011;96(11):3337–53.Google Scholar
  34. 34.
    Deacon CF, Ahren B, Holst JJ. Inhibitors of dipeptidyl peptidase IV:a novel approach for the prevention and treatment of type 2 diabetes? Expert Opin Investig Drugs. 2004;13(9):1091–102.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen L, McNulty J, Anderson D, Liu Y, Nystrom C, Bullard S, et al. Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats. J Pharmacol Exp Ther. 2010;334(1):164–70.Google Scholar
  36. 36.
    Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298(5):714–9.Google Scholar
  37. 37.
    Garg SK, Ritchie PJ, Moser EG, Snell-Bergeon JK, Freson BJ, Hazenfield RM. Effects of colesevelam on LDL-C, A1c and GLP-1 levels in patients with type 1 diabetes:a pilot randomized double-blind trial. Diabetes Obes Metab. 2011;13(2):137–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Sato H, Macchiarulo A, Thomas C, Gioiello A, Une M, Hofmann AF, et al. Novel potent and selective bile acid derivatives as TGR5 agonists:biological screening, structure-activity relationships, and molecular modeling studies. J Med Chem. 2008;51(6):1831–41.Google Scholar
  39. 39.
    Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E, et al. Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care. 2001;24(3):489–94.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Motonari Shibakami
    • 1
    Email author
  • Kazuhiko Shibata
    • 2
  • Akira Akashi
    • 3
  • Nobuteru Onaka
    • 3
  • Jun Takezaki
    • 3
  • Gen Tsubouchi
    • 3
  • Hiroaki Yoshikawa
    • 3
  1. 1.Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan
  2. 2.Artisan LaboYokohamaJapan
  3. 3.Technical Research CenterKOBELCO Eco-Solutions Co., Ltd.KobeJapan

Personalised recommendations