Skip to main content
Log in

Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI).

Methods

For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions.

Results

Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference.

Conclusion

New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DLS:

Dynamic Light Scattering

DSC:

Differential Scanning Calorimetry

DTPA-Eu:

Diethylene tri-amine penta acetic acid—Europium

DTPA-Gd:

Diethylene tri-amine penta acetic acid—Gadolinium

E.E:

Encapsulation efficiency

HSA:

Human Serum Albumin

ICP-AES:

Inductively Coupled Plasma Absorption Emission Spectroscopy

ICP-MS:

Inductively Coupled Plasma Mass Spectrometry

MDS:

Mean Droplet Size

MRI:

Magnetic Resonance Imaging

PDI:

Polydispersity Index

TEM:

Transmission Electron Microscopy

TGA:

Thermo Gravimetric Analysis

References

  1. Pays K, Giermanska-Kahn J, Pouligny B, Bibette J, Leal-Calderon F. Double emulsions: how does release occur? J Control Release. 2002;79:193–205.

    Article  CAS  PubMed  Google Scholar 

  2. Doiron AL, Chu K, Ali A, Brannon-Peppas L. Preparation and initial characterization of biodegradable particles containing gadolinium-DTPA contrast agent for enhanced MRI. Proc Natl Acad Sci U S A. 2008;105:17232–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sigward E, Mignet N, Rat P, Dutot M, Muhamed S, Guigner JM, et al. Formulation and cytotoxicity evaluation of new self-emulsifying multiple W/O/W nanoemulsions. Int J Nanomed. 2013;8:611–25.

    Google Scholar 

  4. Gupta S. Biocompatible microemulsion systems for drug encapsulation and delivery. Curr Sci. 2011;101:174–88.

    CAS  Google Scholar 

  5. Chuan YP, Zeng BY, O’Sullivan B, Thomas R, Middelberg APJ. Co-delivery of antigen and a lipophilic anti-inflammatory drug to cells via a tailorable nanocarrier emulsion. J Colloid Interface Sci. 2012;368:616–24.

    Article  CAS  PubMed  Google Scholar 

  6. Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J, et al. Multifunctional Nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano. 2011;5:4422–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev. 1997;25:47–58.

    Article  CAS  Google Scholar 

  8. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10:102–10.

    Article  CAS  Google Scholar 

  9. Gao GH, Lee JW, Nguyen MK, Im GH, Yang J, Heo H, et al. pH-responsive polymeric micelle based on PEG-poly(β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. J Control Release. 2011;155:11–7.

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura E, Makino K, Okano T, Yamamoto T, Yokoyama M. A polymeric micelle MRI contrast agent with changeable relaxivity. J Control Release. 2006;114:325–33.

    Article  CAS  PubMed  Google Scholar 

  11. Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 2006;19:142–64.

    Article  CAS  PubMed  Google Scholar 

  12. Hak S, Sanders HMHF, Agrawal P, Langereis S, Grüll H, Keizer HM, et al. A high relaxivity Gd(III)DOTA-DSPE-based liposomal contrast agent for magnetic resonance imaging. Eur J Pharm Biopharm. 2009;72:397–404.

    Article  CAS  PubMed  Google Scholar 

  13. Mulder WJM, Strijkers GJ, Griffioen AW, van Bloois L, Molema G, Storm G, et al. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug Chem. 2004;15:799–806.

    Article  CAS  PubMed  Google Scholar 

  14. Luciani A, Olivier J-C, Clement O, Siauve N, Brillet P-Y, Bessoud B, et al. Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology. 2004;231:135–42.

    Article  PubMed  Google Scholar 

  15. Sainsbury F, Zeng B, Middelberg APJ. Towards designer nanoemulsions for precision delivery of therapeutics. Curr Opin Chem Eng. 2014;4:11–7.

    Article  Google Scholar 

  16. Yang F, Gu A, Chen Z, Gu N, Ji M. Multiple emulsion microbubbles for ultrasound imaging. Mater Lett. 2008;62:121–4.

    Article  CAS  Google Scholar 

  17. Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, et al. Iron oxyde core oil-in-water emulsions as a multifonctional nanoparticle platform for tumor targeting and imaging. Biomaterials. 2009;30:6947–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Li C, Liu Q, Mei Z, Wang J, Xu J, Sun D. Pickering emulsions stabilized by paraffin wax and Laponite clay particles. J Colloid Interface Sci. 2009;336:314–21.

    Article  CAS  PubMed  Google Scholar 

  19. Nepal PR, Han H-K, Choi H-K. Preparation and in vitro–in vivo evaluation of Witepsol® H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10. Eur J Pharm Sci. 2010;39:224–32.

    Article  CAS  PubMed  Google Scholar 

  20. Bouyer E, Mekhloufi G, Rosilio V, Grossiord J-L, Agnely F. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm. 2012;436:359–78.

    Article  CAS  PubMed  Google Scholar 

  21. Schuch A, Köhler K, Schuchmann HP. Differential scanning calorimetry (DSC) in multiple W/O/W emulsions. J Therm Anal Calorim. 2013;111:1881–90.

    Article  CAS  Google Scholar 

  22. Bos MA, van Vliet T. Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv Colloid Interf Sci. 2001;91:437–71.

    Article  CAS  Google Scholar 

  23. Damodaran S. Protein stabilization of emulsions and foams. J Food Sci. 2005;70:R54–66.

    Article  CAS  Google Scholar 

  24. Elster AD, Jackels SC, Allen NS, Marrache RC. Dyke award. Europium-DTPA: a gadolinium analogue traceable by fluorescence microscopy. Am J Neuroradiol. 1989;10:1137–44.

    CAS  PubMed  Google Scholar 

  25. Mignet N, Chermont Q, Randrianarivelo T, Seguin J, Richard C, Bessodes M, et al. Liposome biodistribution by time resolved fluorimetry of lipophilic europium complexes. Eur Biophys J. 2006;35:155–61.

    Article  CAS  PubMed  Google Scholar 

  26. Gan L, Gan Y, Zhu C, Zhang X, Zhu J. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results. Int J Pharm. 2009;365:143–9.

    Article  CAS  PubMed  Google Scholar 

  27. Clausse D. Thermal behaviour of emulsions studied by differential scanning calorimetry. J Therm Anal Calorim. 1998;51:191–201.

    Article  CAS  Google Scholar 

  28. Leyendekkers JV, Hunter RJ. Thermodynamic properties of water in the subcooled region. I. J Chem Phys. 1985;82:1440–6.

    Article  CAS  Google Scholar 

  29. Schuch A, Deiters P, Henne J, Köhler K, Schuchmann HP. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water. J Colloid Interface Sci. 2013;402:157–64.

    Article  CAS  PubMed  Google Scholar 

  30. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60:625–37.

    Article  CAS  PubMed  Google Scholar 

  31. Delmas T. How to prepare and stabilize very small nanoemulsions. Langmuir. 2011;27:1683–92.

    Article  CAS  PubMed  Google Scholar 

  32. Clausse D, Gomez F, Pezron I, Komunjer L, Dalmazzone C. Morphology characterization of emulsions by differential scanning calorimetry. Adv Colloid Interf Sci. 2005;117:59–74.

    Article  CAS  Google Scholar 

  33. Mezzenga R, Folmer BM, Hughes E. Design of double emulsions by osmotic pressure tailoring. Langmuir. 2004;20:3574–82.

    Article  CAS  PubMed  Google Scholar 

  34. Chou DK, Krishnamurthy R, Randolph TW, Carpenter JF, Manning MC. Effects of Tween 20® and Tween 80® on the stability of Albutropin during agitation. J Pharm Sci. 2005;94:1368–81.

    Article  CAS  PubMed  Google Scholar 

  35. Laurent S, Henoumont C, Vander Elst L, Muller RN. Synthesis and physicochemical characterisation of Gd-DTPA derivatives as contrast agents for MRI.Eur J. Inorg Chem. 2012;12:1889–915.

    Google Scholar 

  36. Tilcock C, Unger E, Cullis P, MacDougall P. Liposomal Gd-DTPA: preparation and characterization of relaxivity. Radiology. 1989;171:77–80.

    Article  CAS  PubMed  Google Scholar 

  37. Unger E, Shen DK, Wu G, Fritz T. Liposomes as MR contrast agents: pros and cons. Magn Reson Med. 1991;22:304–8.

    Article  CAS  PubMed  Google Scholar 

  38. Fossheim SL, Fahlvik AK, Klaveness J, Muller RN. Paramagnetic liposomes as MRI contrast agents: influence of liposomal physicochemical properties on the in vitro relaxivity. Magn Reson Imaging. 1999;17:83–9.

    Article  CAS  PubMed  Google Scholar 

  39. Strijkers GJ, Mulder WJM, van Heeswijk RB, Frederik PM, Bomans P, Magusin PCMM, et al. Relaxivity of liposomal paramagnetic MRI contrast agents. Magn Reson Mater Phys Biol Med. 2005;18:186–92.

    Article  CAS  Google Scholar 

  40. Dekker M. In: Cevc G, editor. Phospholipids handbook. New York: CRC Press; 1993. p. 988.

    Google Scholar 

  41. Magdassi S, Garti N. Release of electrolytes in multiple emulsions: coalescence and breakdown or diffusion through oil phase? Colloids Surf. 1984;12:367–73.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors wish to thank Jean-Michel Guigner, Institut de minéralogie et de physique des milieu condensés IMPC-IRD-CNRS UMR 7590, UPMC for his support for TEM imaging and ED387-iViV, UPMC Sorbonne Université, Paris, France for supporting this project.

We thank the Maison des Langues, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris France for their review of the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Crauste-Manciet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigward, E., Corvis, Y., Doan, BT. et al. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent. Pharm Res 32, 2983–2994 (2015). https://doi.org/10.1007/s11095-015-1680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1680-8

KEY WORDS

Navigation