Advertisement

Determination of the Antioxidant Capacity of Tragopogon Pratensis Species and Testing Their Pancreatic and Hepatic Regenerative Activity

  • 5 Accesses

This experimental study was aimed at assessing the total polyphenol and flavonoid content of Tragopogon pratensis (folium) vegetal extract and evaluating the histopathological status of mice with liver problems and diabetes during therapy with 20% hydroalcoholic extract of T. pratensis (folium). The diabetes in mice was induced by single intraperitoneal (i.p.) dose of 180 mg/kg b.w. streptozotocin. The experiment involved two congtrol groups: the first (I) group consisted of mice with normal pancreatic function; the second (II) group consisted of mice with experimentally induced diabetes. The third (III) group of mice with experimentally induced diabetes was treated with T. pratensis extract at a dose of 150 mg/kg b.w.. The first and second groups were not treated, while the third group received daily the established medication once a day, in the morning at the same time (9 a.m), for five weeks. The obtained results showed that the administration of T. pratensis tincture triggers the hepatic regenerative processes, restores functional activity of the liver, and positively influences functionality of the pancreas. The molecular docking analysis supports results of the experimental study.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1.
Fig. 2.

References

  1. 1.

    A. C. Maritim, R. A. Sanders, and J. B. Watkins, J. Biochem. Mol. Toxicol., 17(1), 24 – 38 (2003).

  2. 2.

    R. M. Văruţ, C. E. Gîrd, L. T. Rotaru, et al., Pharm. Chem. J., 51, 1088 (2018).

  3. 3.

    P. M. Patricia, Curr. Opin. Pharmacol., 9, 771 – 779 (2009).

  4. 4.

    D. A. Butterfiel, Ann. N. Y. Acad. Sci., 8, 448 – 462 (1998).

  5. 5.

    H. Esterbauer, R. J. Schaur, and H. Zollner, Free Rad. Biol. Med., 11(1), 81 – 128 (1991).

  6. 6.

    F. Giacco and M. Brownlee, Circ. Res.,107(9), 1058 – 1070 (2010).

  7. 7.

    R. M. Văruţ, L. T. Rotaru, and M. C. Văruţ, Rev. Chim., 68(8), 1776 – 1779 (2017).

  8. 8.

    T. Lengauer and M. Rarey, Curr. Opin. Struct. Biol., 6(3), 402 – 406 (1996).

  9. 9.

    D. Amzoiu, A. M. Stoian, E. Amzoiu, et. Al., Rev. Chim., 66(12), 2013 – 2016 (2015).

  10. 10.

    D. B. Kitchen, H. Decornez, J. R. Furr, et. al., Drug Discovery, 3(11), 935 – 949 (2004).

  11. 11.

    C. Florescu, L. T. Rotaru, and R. M. Varut., Rev. Chim., 69(4), 837 – 839 (2018).

  12. 12.

    T. Miyase, H. Kohsaka, and A. Ueno, Phytochemistry, 31(6), 2087 – 2091 (1992).

  13. 13.

    R. Fitter, A. Fitter, and B. Marjorie,Wild Flowers of Britain and Ireland – New Guide to Our Wild Flowers, Bloomsbury Publishing PLC (2003), pp. 294 – 295

  14. 14.

    http: //en.wikipedia.org/wiki/Tragopogon pratensis

  15. 15.

    V. D. Mitic, S. Jovanovic, and M. D. Ilic, Bulg. Chem. Commun., 46(2), 269 – 276 (2014).

  16. 16.

    R. M. Varut and L. T. Rotaru, Rev. Chim., 68(2), 228 – 231 (2017).

  17. 17.

    S. P. Ionescu and E. Savopol, Extract farmaceutice vegetable, Ed. Medicală, Bucureşti (1997), pp. 85 – 87.

  18. 18.

    I. Popovici and D. Lupuleasa, Tehnologie farmaceuticã, Ed. Polirom, Iaşi (1997), Vol. 1, pp. 359 – 389

  19. 19.

    Farmacopeea Română, Ediþia X-a, Ed. Medicală, Bucureşti (1993), pp. 921 – 922, 983 – 989, 1019 – 1021, 1051–1055.

  20. 20.

    R. M. Varut, Med. Res. Chronicles, 6(1), 45 – 49 (2019).

  21. 21.

    A. Berbecaru-Iovan, Cercetări farmacognostice şi farmacologice asupra unor specii vegetale cu virtuþi hipoglicemiante, Craiova (2009), pp. 119 – 123.

  22. 22.

    M. D. Hanwell, D. E. Curtis, D. C. Lonie, et. al., J. Cheminform., 4, 17 (2012).

  23. 23.

    Protein Data Bank, http: //www.pdb.org/pdb/home/home.do

  24. 24.

    https: //zhanglab.ccmb.med.umich.edu/ModRefiner/

  25. 25.

    W. L. DeLano, PyMOL, DeLano Scientific, San Carlos, CA (2002), p. 700.

  26. 26.

    S. P. Nair, N. C. Shah, and R. M. Shah., Biomed. Res., 23(3), 402 – 404 (2012).

  27. 27.

    M. Akhlaghi and B. Bandy, J. Mol. Cell. Cardiol., 46, 309 – 317 (2009).

  28. 28.

    G. Sudha, M. Sangeetha, R. Shree, and S. Svadivukkarasi, Int. J. Curr. Pharm. Res., 2, 137 – 140 (2011).

  29. 29.

    H. F. Waer and S. A. Helmy, J. Nutr. Food Sci., 2, 165 (2012).

Download references

Author information

Correspondence to Renata Maria Văruţ.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 53, No. 11, pp. 10 – 10, November, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rotaru, L.T., Văruţ, R.M., Amzoiu, E. et al. Determination of the Antioxidant Capacity of Tragopogon Pratensis Species and Testing Their Pancreatic and Hepatic Regenerative Activity. Pharm Chem J (2020) doi:10.1007/s11094-020-02106-0

Download citation

Keywords

  • molecular docking
  • streptozotocin diabet
  • Tragopogon pratensis